【題目】如圖,ACBD相交于點O,∠DAB=∠CBA,添加下列哪一個條件后,仍不能使△ADB≌△CBA的是(  )

A.ADBCB.ABD=∠BACC.OAOBD.ACBD

【答案】D

【解析】

根據(jù)題目中的條件和全等三角形的判定方法,可以判斷哪個選項中的說法能判定△ADB≌△CBA,從而可以解答本題.

∵∠DAB=∠CBA,ABBA,

∴若添加ADBC,則可以判定△ADB≌△CBASAS),故選項A不符合題意;

若添加∠ABD=∠BAC,則可以判定△ADB≌△CBAASA),故選項B不符合題意;

若添加OAOB,則∠DBA=∠CAB,故可以判定△ADB≌△CBAASA),故選項C不符合題意;

若添加ACBD,則無法判斷△ADB≌△CBA,故選項D符合題意;

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:

1)操作發(fā)現(xiàn):如圖1,在中,為銳角,為射線上一動點,連接,以為直角邊且在的上方作等腰直角三角形.,.當(dāng)點在線段上時(與點不重合),你能發(fā)現(xiàn)的數(shù)量關(guān)系和位置關(guān)系嗎?請直接寫出你發(fā)現(xiàn)的結(jié)論.

2)類比與猜想:當(dāng)點在線段的延長線上時,其余條件不變,(1)中的結(jié)論是否仍然成立?請在圖2中畫出相應(yīng)圖形并說明理由.

3)深入探究:如圖3,若,,點在線段上運動,請寫出的位置關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將正面分別寫著數(shù)字1,2,3的三張卡片(注:這三張卡片的形狀、大小、質(zhì)地,顏色等其他方面完全相同,若背面上放在桌面上,這三張卡片看上去無任何差別)洗勻后,背面向上放在桌面上,從中先隨機抽取一張卡片,記該卡片上的數(shù)字為x,再把剩下的兩張卡片洗勻后,背面向上放在桌面上,再從這兩張卡片中隨機抽取一張卡片,記該卡片上的數(shù)字為y.

(1)用列表法或樹狀圖法(樹狀圖也稱樹形圖)中的一種方法,寫出(x,y)所有可能出現(xiàn)的結(jié)果.

(2)求取出的兩張卡片上的數(shù)字之和為偶數(shù)的概率P.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,在⊙O上取點D,連接CD,使得AC=CD,延長CD交直線AB于點E.

(1)求證:CD是⊙O的切線.

(2)AC=2,AE=6.

①求⊙O的半徑.

②點M是優(yōu)弧上的一個動點(不與B,D重合),求MD,MB及弧BD圍成的陰影部分面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生對待學(xué)習(xí)的態(tài)度一直是教育工作者關(guān)注的問題之一.為此,某區(qū)教委對該區(qū)部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖和圖的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;

2)將圖補充完整;

3)求出圖C級所占的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有一個△ABC,頂點A(﹣13),B2,0),C(﹣3,﹣1).

1)畫出△ABC關(guān)于y軸的對稱軸圖形△A1B1C1(不寫畫法);

A1的坐標(biāo)為   ;點B1的坐標(biāo)為   ;點C1的坐標(biāo)為   

2)若網(wǎng)格上的每個小正方形的邊長為1,則△ABC的面積是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以ABC的邊AB、AC為邊向外作等邊三角形ABDACE,線段BEDC于點F,下列結(jié)論:①CDBE;②FA平分∠BAC;③∠BFC120°,④FA+FBFD,其中正確有(  )個.

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖1,平面直角坐標(biāo)系中,拋物線y=ax2+bx+3x軸分別交于點A(﹣2,0),B(4,0),與y軸交于點C,點Dy軸負(fù)半軸上一點,直線BD與拋物線y=ax2+bx+3在第三象限交于點E(﹣4,y)點F是拋物線y=ax2+bx+3上的一點,且點F在直線BE上方,將點F沿平行于x軸的直線向右平移m個單位長度后恰好落在直線BE上的點G處.

(1)求拋物線y=ax2+bx+3的表達式,并求點E的坐標(biāo);

(2)設(shè)點F的橫坐標(biāo)為x(﹣4<x<4),解決下列問題:

①當(dāng)點G與點D重合時,求平移距離m的值;

②用含x的式子表示平移距離m,并求m的最大值;

(3)如圖2,過點Fx軸的垂線FP,交直線BE于點P,垂足為F,連接FD.是否存在點F,使FDPFDG的面積比為1:2?若存在,直接寫出點F的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李大媽加盟了紅紅全國燒烤連鎖店,該公司的宗旨是薄利多銷,經(jīng)市場調(diào)查發(fā)現(xiàn),當(dāng)羊肉串的單價定為元時,每天能賣出串,在此基礎(chǔ)上,每加價元李大媽每天就會少賣出串,考慮了所有因素后李大媽的每串羊肉串的成本價為元,若李大媽每天銷售這種羊肉串想獲得利潤是元,那么請問這種羊肉串應(yīng)怎樣定價?

查看答案和解析>>

同步練習(xí)冊答案