【題目】已知直線y=kx+b與拋物線y=ax2(a>0)相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸正半軸相交于點(diǎn)C,過點(diǎn)A作AD⊥x軸,垂足為D.

(1)若∠AOB=60°,AB∥x軸,AB=2,求a的值;
(2)若∠AOB=90°,點(diǎn)A的橫坐標(biāo)為﹣4,AC=4BC,求點(diǎn)B的坐標(biāo);
(3)延長(zhǎng)AD、BO相交于點(diǎn)E,求證:DE=CO.

【答案】
(1)解:如圖1,

∵拋物線y=ax2的對(duì)稱軸是y軸,且AB∥x軸,

∴A與B是對(duì)稱點(diǎn),O是拋物線的頂點(diǎn),

∴OA=OB,

∵∠AOB=60°,

∴△AOB是等邊三角形,

∵AB=2,AB⊥OC,

∴AC=BC=1,∠BOC=30°,

∴OC= ,

∴A(﹣1, ),

把A(﹣1, )代入拋物線y=ax2(a>0)中得:a= ;


(2)解:如圖2,過B作BE⊥x軸于E,過A作AG⊥BE,交BE延長(zhǎng)線于點(diǎn)G,交y軸于F,

∵CF∥BG,

∵AC=4BC,

=4,

∴AF=4FG,

∵A的橫坐標(biāo)為﹣4,

∴B的橫坐標(biāo)為1,

∴A(﹣4,16a),B(1,a),

∵∠AOB=90°,

∴∠AOD+∠BOE=90°,

∵∠AOD+∠DAO=90°,

∴∠BOE=∠DAO,

∵∠ADO=∠OEB=90°,

∴△ADO∽△OEB,

,

,

∴16a2=4,

a=±

∵a>0,

∴a= ;

∴B(1, );


(3)解:如圖3,

設(shè)AC=nBC,由(2)同理可知:A的橫坐標(biāo)是B的橫坐標(biāo)的n倍,

則設(shè)B(m,am2),則A(﹣mn,am2n2),

∴AD=am2n2,

過B作BF⊥x軸于F,

∴DE∥BF,

∴△BOF∽△EOD,

= = ,

,

= ,DE=am2n,

= ,

∵OC∥AE,

∴△BCO∽△BAE,

,

= ,

∴CO= =am2n,

∴DE=CO.


【解析】(1)過等邊三角形的內(nèi)心分別作三邊的平行線,求a的值;
(2)如圖2,作輔助線,構(gòu)建平行線和相似三角形,根據(jù)CF∥BG,由A的橫坐標(biāo)為-4,得B的橫坐標(biāo)為1,所以A(-4,16a),B(1,a),證明△ADO∽△OEB,即可得到所求結(jié)論;
(3)如圖3,設(shè)AC=nBC由(2)同理可知:A的橫坐標(biāo)是B的橫坐標(biāo)的n倍,分別根據(jù)兩三角形相似計(jì)算DE和CO的長(zhǎng)即可得出DE=CO.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a=﹣(2)2×3,b|9|+(7),c()÷

(1)2[a(b+c)][b(a2c)]的值.

(2)A()2÷()+(1)2×(13)2B|a|5b+2c,試比較AB的大。

(3)如圖,已知點(diǎn)D是線段AC的中點(diǎn),點(diǎn)B是線段DC上的一點(diǎn),且CBBD23,若ABcm,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=10,BC=5,點(diǎn)E,F(xiàn),G,H分別在矩形ABCD各邊上,且AE=CG,BF=DH,則四邊形EFGH周長(zhǎng)的最小值為( )

A.5
B.10
C.10
D.15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“宏揚(yáng)傳統(tǒng)文化,打造書香校園”活動(dòng)中,學(xué)校計(jì)劃開展四項(xiàng)活動(dòng):“A﹣國(guó)學(xué)誦讀”、“B﹣演講”、“C﹣課本劇”、“D﹣書法”,要求每位同學(xué)必須且只能參加其中一項(xiàng)活動(dòng),學(xué)校為了了解學(xué)生的意愿,隨機(jī)調(diào)查了部分學(xué)生,結(jié)果統(tǒng)計(jì)如下:

(1)如圖,希望參加活動(dòng)C占20%,希望參加活動(dòng)B占15%,則被調(diào)查的總?cè)藬?shù)為 人,扇形統(tǒng)計(jì)圖中,希望參加活動(dòng)D所占圓心角為 度,根據(jù)題中信息補(bǔ)全條形統(tǒng)計(jì)圖.

(2)學(xué),F(xiàn)有800名學(xué)生,請(qǐng)根據(jù)圖中信息,估算全校學(xué)生希望參加活動(dòng)A有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,擊打臺(tái)球時(shí)小球反彈前后的運(yùn)動(dòng)路線遵循對(duì)稱原理,即小球反彈前后的運(yùn)動(dòng)路線與臺(tái)球案邊緣的夾角相等(α=β),在一次擊打臺(tái)球時(shí),把位于點(diǎn)P處的小球沿所示方向擊出,小球經(jīng)過5次反彈后正好回到點(diǎn)P,若臺(tái)球案的邊AD的長(zhǎng)度為4,則小球從P點(diǎn)被擊出到回到點(diǎn)P,運(yùn)動(dòng)的總路程為( )

A.16
B.16
C.20
D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店購進(jìn)一批甲、乙兩種款型時(shí)尚T恤衫,甲種款型共用了7800元,乙種款型共用了6400元,甲種款型的件數(shù)是乙種款型件數(shù)的1.5倍,甲種款型每件的進(jìn)價(jià)比乙種款型每件的進(jìn)價(jià)少30元.

1)甲、乙兩種款型的T恤衫各購進(jìn)多少件?

2)商店進(jìn)價(jià)提高60%標(biāo)價(jià)銷售,銷售一段時(shí)間后,甲款型全部售完,乙款型剩余一半,商店決定對(duì)乙款型按標(biāo)價(jià)的五折降價(jià)銷售,很快全部售完,求售完 這批T恤衫商店共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為綠化校園,安排七年級(jí)三個(gè)班植樹,其中,一班植樹x棵,二班植樹的棵數(shù)是一班的2倍少20棵,三班植樹的棵數(shù)是二班的一半多15棵.

1)三個(gè)班共植樹多少棵?(用含x的式子表示)

2)當(dāng)x30時(shí),三個(gè)班中哪個(gè)班植樹最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,工程上常用鋼珠來測(cè)量零件上小孔的直徑,假設(shè)鋼珠的直徑是12毫米,測(cè)得鋼珠頂端離零件表面的距離為9毫米,則這個(gè)小孔的直徑AB是毫米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的二次函數(shù)y=x2+bx+c經(jīng)過點(diǎn)(﹣1,0)和(2,6).
(1)求b和c的值.
(2)若點(diǎn)A(n,y1),B(n+1,y2),C(n+2,y3)都在這個(gè)二次函數(shù)的圖象上,問是否存在整數(shù)n,使 + + = ?若存在,請(qǐng)求出n;若不存在,請(qǐng)說明理由.
(3)若點(diǎn)P是二次函數(shù)圖象在y軸左側(cè)部分上的一個(gè)動(dòng)點(diǎn),將直線y=﹣2x沿y軸向下平移,分別交x軸、y軸于C、D兩點(diǎn),若以CD為直角邊的△PCD與△OCD相似,請(qǐng)求出所有符合條件點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案