【題目】某服裝店購進(jìn)一批甲、乙兩種款型時(shí)尚T恤衫,甲種款型共用了7800元,乙種款型共用了6400元,甲種款型的件數(shù)是乙種款型件數(shù)的1.5倍,甲種款型每件的進(jìn)價(jià)比乙種款型每件的進(jìn)價(jià)少30元.
(1)甲、乙兩種款型的T恤衫各購進(jìn)多少件?
(2)商店進(jìn)價(jià)提高60%標(biāo)價(jià)銷售,銷售一段時(shí)間后,甲款型全部售完,乙款型剩余一半,商店決定對(duì)乙款型按標(biāo)價(jià)的五折降價(jià)銷售,很快全部售完,求售完 這批T恤衫商店共獲利多少元?
【答案】(1)甲種款型的T恤衫購進(jìn)60件,乙種款型的T恤衫購進(jìn)40件;(2)售完這批T恤衫商店共獲利5960元.
【解析】試題分析:(1)可設(shè)乙種款型的T恤衫購進(jìn)x件,則甲種款型的T恤衫購進(jìn)1.5x件,根據(jù)題意列出方程求解即可;
(2)先求出甲款型的利潤,乙款型前面銷售一半的利潤,后面銷售一半的虧損,再相加即可求解.
試題解析:(1)設(shè)乙種款型的T恤衫購進(jìn)x件,則甲種款型的T恤衫購進(jìn)1.5x件,依題意有: ,解得x=40,經(jīng)檢驗(yàn),x=40是原方程組的解,且符合題意,1.5x=60.
答:甲種款型的T恤衫購進(jìn)60件,乙種款型的T恤衫購進(jìn)40件;
(2)=160,160﹣30=130(元),
130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元).
答:售完這批T恤衫商店共獲利5960元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】工廠某車間有48名工人,平均每人每天加工大齒輪10個(gè)或小齒輪15個(gè),已知1個(gè)大齒輪與3個(gè)小齒輪配成一套,那么怎么安排工人,才能使每天加工的大小齒輪剛好配套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列近似數(shù)的結(jié)論不正確的是( 。
A.0.1 (精確到0.1)B.0.05 (精確到百分位)
C.0.50 (精確到百分位)D.0.100 (精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列說法:
①過一點(diǎn)有且只有一條直線與已知直線平行;
②無論k取何實(shí)數(shù),多項(xiàng)式x2-ky2總能分解成兩個(gè)一次因式積的形式;
③ 若(t-3)3-2t=1,則t可以取的值有3個(gè);
④關(guān)于x,y的方程組,將此方程組的兩個(gè)方程左右兩邊分別對(duì)應(yīng)相加,
得到一個(gè)新的方程,其中當(dāng)a每取一個(gè)值時(shí),就有一個(gè)方程,而這些方程總有一個(gè)公共解,則這個(gè)公共解是,其中正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)兩位正整數(shù)m的個(gè)位數(shù)為8,則稱m為“好數(shù)”.
(1)求證:對(duì)任意“好數(shù)”m,m2-64一定為20的倍數(shù);
(2)若m=p2-q2,且p,q為正整數(shù),則稱數(shù)對(duì)(p,q)為“友好數(shù)對(duì)”,規(guī)定: ,例如68=182-162,稱數(shù)對(duì)(18,16)為“友好數(shù)對(duì)”,則,求小于50的“好數(shù)”中,所有“友好數(shù)對(duì)”的H(m)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,火車站、碼頭分別位于A,B兩點(diǎn),直線a和b分別表示鐵路與河流.
(1)從火車站到碼頭怎樣走最近,畫圖并說明理由;
(2)從碼頭到鐵路怎樣走最近,畫圖并說明理由;
(3)從火車站到河流怎樣走最近,畫圖并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明(在下面的括號(hào)內(nèi)填上相應(yīng)的結(jié)論或推理的依據(jù)):如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠3,
求證:AD是∠BAC的平分線.
證明:∵AD⊥BC,EG⊥BC(已知)
∴∠4=∠5=90°( )
∴AD∥EG( )
∴∠1=∠E( ) ∠2=∠3( )
∵∠E=∠3(已知)
∴( )=( )
∴AD是∠BAC的平分線( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】杭紹臺(tái)高鐵項(xiàng)目是國內(nèi)首批八個(gè)社會(huì)資本投資鐵路示范項(xiàng)目之一,也是中國首個(gè)民營控股高速鐵路項(xiàng)目.該項(xiàng)目可用批復(fù)總投資預(yù)計(jì)448.9億元,資本金占總投資的30%,其中民營聯(lián)合體占股51%,其中448.9億元用科學(xué)記數(shù)法表示為_____元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com