如圖,已知拋物線與x軸交于A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3)。

⑴求拋物線的解析式;

⑵設(shè)拋物線的頂點(diǎn)為D,在其對稱軸的右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC是等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由;

⑶若點(diǎn)M是拋物線上一點(diǎn),以B、C、D、M為頂點(diǎn)的四邊形是直角梯形,試求出點(diǎn)M的坐標(biāo)。

證明:⑴∵拋物線與y軸交于點(diǎn)C(0,3),

∴設(shè)拋物線解析式為………………………………1分

根據(jù)題意,得,解得

∴拋物線的解析式為………………………………………2分

⑵存在!3分

得,D點(diǎn)坐標(biāo)為(1,4),對稱軸為x=1!4分

①若以CD為底邊,則PD=PC,設(shè)P點(diǎn)坐標(biāo)為(x,y),根據(jù)勾股定理,

,即y=4-x!5分

又P點(diǎn)(x,y)在拋物線上,∴,即…………6分

解得,,應(yīng)舍去!!7分

,即點(diǎn)P坐標(biāo)為!8分

②若以CD為一腰,因?yàn)辄c(diǎn)P在對稱軸右側(cè)的拋物線上,由拋物線對稱性知,點(diǎn)P與點(diǎn)C關(guān)于直線x=1對稱,此時(shí)點(diǎn)P坐標(biāo)為(2,3)。

∴符合條件的點(diǎn)P坐標(biāo)為或(2,3)。……………………9分

⑶由B(3,0),C(0,3),D(1,4),根據(jù)勾股定理,

得CB=,CD=,BD=,………………………………………………10分

,

∴∠BCD=90°,………………………………………………………………………11分

設(shè)對稱軸交x軸于點(diǎn)E,過C作CM⊥DE,交拋物線于點(diǎn)M,垂足為F,在Rt△DCF中,

∵CF=DF=1,

∴∠CDF=45°,

由拋物線對稱性可知,∠CDM=2×45°=90°,點(diǎn)坐標(biāo)M為(2,3),

∴DM∥BC,

∴四邊形BCDM為直角梯形, ………………………………………………………12分

由∠BCD=90°及題意可知,

以BC為一底時(shí),頂點(diǎn)M在拋物線上的直角梯形只有上述一種情況;

以CD為一底或以BD為一底,且頂點(diǎn)M在拋物線上的直角梯形均不存在。

綜上所述,符合條件的點(diǎn)M的坐標(biāo)為(2,3)。…………………………………

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于點(diǎn)A(-2,0),B(4,0),與y軸交于點(diǎn)C(0,8).
(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(2)設(shè)直線CD交x軸于點(diǎn)E.在線段OB的垂直平分線上是否存在點(diǎn)P,使得點(diǎn)P到直線CD的距離等于點(diǎn)P到原點(diǎn)O的距離?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由;
(3)點(diǎn)M是直線CD上的一動(dòng)點(diǎn),BM交拋物線于N,是否存在點(diǎn)N是線段BM的中點(diǎn),如果存在,求出點(diǎn)N的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于點(diǎn)A(-1,0),與y軸交于點(diǎn)C(0,3),且對稱軸方程為x=1
(1)求拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);
(2)求拋物線的解析式;
(3)設(shè)拋物線的頂點(diǎn)為D,在其對稱軸的右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC是等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(4)若點(diǎn)M是拋物線上一點(diǎn),以B、C、D、M為頂點(diǎn)的四邊形是直角梯形,試求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于點(diǎn)A(-1,0),E(3,0),與y軸交于點(diǎn)B,且該精英家教網(wǎng)函數(shù)的最大值是4.
(1)拋物線的頂點(diǎn)坐標(biāo)是(
 
,
 
);
(2)求該拋物線的解析式和B點(diǎn)的坐標(biāo);
(3)設(shè)拋物線頂點(diǎn)是D,求四邊形AEDB的面積;
(4)若拋物線y=mx2+nx+p與上圖中的拋物線關(guān)于x軸對稱,請直接寫出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•株洲)如圖,已知拋物線與x軸的一個(gè)交點(diǎn)A(1,0),對稱軸是x=-1,則該拋物線與x軸的另一交點(diǎn)坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于點(diǎn)A(-2,0),B(4,0),與y軸交于點(diǎn)C(0,8).
(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(2)設(shè)直線CD交x軸于點(diǎn)E,過點(diǎn)B作x軸的垂線,交直線CD于點(diǎn)F,在坐標(biāo)平面內(nèi)找一點(diǎn)G,使以點(diǎn)G、F、C為頂點(diǎn)的三角形與△COE相似,請直接寫出符合要求的,并在第一象限的點(diǎn)G的坐標(biāo);
(3)將拋物線沿其對稱軸平移,使拋物線與線段EF總有公共點(diǎn).試探究:拋物線向上最多可平移多少個(gè)單位長度?

查看答案和解析>>

同步練習(xí)冊答案