如圖4,在中,的外角,則     °.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,是邊長(zhǎng)分別為4和3的兩個(gè)等邊三角形紙片ABC和CD′E′疊放在一起.
(1)操作:固定△ABC,將△CD′E′繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△CDE,連接AD、BE,如圖2.探究:在圖2中,線(xiàn)段BE與AD之間有怎樣的大小關(guān)系?試說(shuō)明理由;
(2)操作:固定△ABC,若將△CD′E′繞點(diǎn)C順時(shí)針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長(zhǎng)線(xiàn)交AB于點(diǎn)F,在線(xiàn)段CF上沿著CF方向以每秒1個(gè)單位長(zhǎng)的速度平移,平移后的△CDE設(shè)為△PQR,如圖3.探究:在圖3中,除△ABC和△CDE外,還有哪個(gè)三角形是等腰三角形?寫(xiě)出你的結(jié)論并說(shuō)明理由;
(3)探究:如圖4,在(2)的條件下,將△PQR的頂點(diǎn)P移動(dòng)至F點(diǎn),求此時(shí)QH的長(zhǎng)度.精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)操作:如圖1,在線(xiàn)段AB所在的直線(xiàn)上取一點(diǎn)O(O點(diǎn)在線(xiàn)段外),將線(xiàn)段AB繞點(diǎn)O旋轉(zhuǎn)一周,所得到的圖形是個(gè)圓環(huán)(如圖2),此圓環(huán)的面積就是線(xiàn)段AB所掃過(guò)的面積,已知AB=2,OA=1,則線(xiàn)段AB掃過(guò)的面積為
 

精英家教網(wǎng)
(2)如圖3,在Rt△ABC中,∠C=90°,∠B=30°,AC=2,若將△ABC繞點(diǎn)A旋轉(zhuǎn)一周,那么邊BC掃過(guò)的圖形為
 
,面積為
 

(3)若將圖3中的Rt△ABC繞點(diǎn)C旋轉(zhuǎn)一周,則邊AB掃過(guò)的圖形是什么?面積為多少?
(結(jié)果中保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•徐匯區(qū)二模)在Rt△ABC中,∠C=90°,AC=6,sinB=
35
,⊙B的半徑長(zhǎng)為1,⊙B交邊CB于點(diǎn)P,點(diǎn)O是邊AB上的動(dòng)點(diǎn).
(1)如圖1,將⊙B繞點(diǎn)P旋轉(zhuǎn)180°得到⊙M,請(qǐng)判斷⊙M與直線(xiàn)AB的位置關(guān)系;
(2)如圖2,在(1)的條件下,當(dāng)△OMP是等腰三角形時(shí),求OA的長(zhǎng); 
(3)如圖3,點(diǎn)N是邊BC上的動(dòng)點(diǎn),如果以NB為半徑的⊙N和以O(shè)A為半徑的⊙O外切,設(shè)NB=y,OA=x,求y關(guān)于x的函數(shù)關(guān)系式及定義域.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)觀察發(fā)現(xiàn)

如圖1,⊙O的半徑為1,點(diǎn)P為⊙O外一點(diǎn),PO=2,在⊙O上找一點(diǎn)M,使得PM最長(zhǎng).
作法如下:作射線(xiàn)PO交⊙O于點(diǎn)M,則點(diǎn)M就是所求的點(diǎn),此時(shí)PM=
3
3

請(qǐng)說(shuō)明PM最長(zhǎng)的理由.
(2)實(shí)踐運(yùn)用
如圖2,在等邊三角形 ABC中,AB=2,以AB為斜邊作直角三角形AMB,使CM最長(zhǎng).
作法如下:以AB為直徑畫(huà)⊙O,作射線(xiàn)CO交⊙O右側(cè)于點(diǎn)M,則△AMB即為所求.請(qǐng)按上述方法用三角板和圓規(guī)畫(huà)出圖形,并求出CM的長(zhǎng)度.
(3)拓展延伸
如圖3,在周長(zhǎng)為m的任意形狀的△ABC中,分別以AB、AC為斜邊作直角三角形AMB,直角三角形ANC,使得線(xiàn)段MN最長(zhǎng),用尺規(guī)畫(huà)出圖形,此時(shí)MN=
0.5m
0.5m
.(保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,是邊長(zhǎng)分別為6和4的兩個(gè)等邊三角形紙片ABC和CD1E1疊放在一起.
(1)操作:固定△ABC,將△CD1E1繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△CDE,連接AD、BE,如圖2.探究:在圖2中,線(xiàn)段BE與AD之間有怎樣的大小關(guān)系?并請(qǐng)說(shuō)明理由;
(2)操作:固定△ABC,若將△CD1E1繞點(diǎn)C順時(shí)針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長(zhǎng)線(xiàn)交AB于點(diǎn)F,在線(xiàn)段CF上沿著CF方向平移,(點(diǎn)F與點(diǎn)P重合即停止平移)平移后的△CDE設(shè)為△PQR,如圖3.
探究:在圖3中,除三角形ABC和CDE外,還有哪個(gè)三角形是等腰三角形?寫(xiě)出你的結(jié)論(不必說(shuō)明理由);
(3)探究:如圖3,在(2)的條件下,設(shè)CQ=x,用x代數(shù)式表示出GH的長(zhǎng).    

查看答案和解析>>

同步練習(xí)冊(cè)答案