【題目】△ABC在直角坐標(biāo)系內(nèi)的位置如圖所示
(1)分別寫出點(diǎn)A,C的坐標(biāo):A: ,C: ;
(2)△ABC的周長(zhǎng)為 ,面積為 ;
(3)請(qǐng)?jiān)谶@個(gè)坐標(biāo)系內(nèi)畫出△A1B1C1與△ABC關(guān)于x軸對(duì)稱.
【答案】(1)(0,3),(﹣2,1);(2)△ABC的周長(zhǎng)為:2;面積為:5;(3)詳見解析.
【解析】
(1)根據(jù)平面直角坐標(biāo)系寫出各點(diǎn)的坐標(biāo)即可;
(2) 利用勾股定理即可求出AC、AB、BC的長(zhǎng),可得△ABC的周長(zhǎng);利用三角形所在的正方形面積減三個(gè)小直角三角形的面積即可求出△ABC的面積;
(3)根據(jù)△A1B1C1與△ABC關(guān)于x軸找出點(diǎn)A、B、C的對(duì)應(yīng)點(diǎn)A1、B1、C1的位置,然后順次連接即可.
解:(1)
如圖所示:A:(0,3),C:(﹣2,1);
故答案為:(0,3),(﹣2,1);
(2)如圖所示:AB=,BC=,
AC=,
故△ABC的周長(zhǎng)為:,
面積為:3×4﹣×1×4﹣×2×2﹣×2×3=5;
故答案為:,5;
(3)如圖所示:△A1B1C1,即為所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為20元/件,試營(yíng)銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件,銷售單價(jià)每上漲1元,每天的銷售量就減少10件
(1)寫出商場(chǎng)銷售這種文具,每天所得的銷售利潤(rùn)w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤(rùn)最大;
(3)商場(chǎng)的營(yíng)銷部結(jié)合上述情況,提出了A、B兩種營(yíng)銷方案:
方案A:該文具的銷售單價(jià)高于進(jìn)價(jià)且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤(rùn)至少為25元.請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為2,a2+1,則點(diǎn)P所在的象限是____;以方程組 的解為坐標(biāo)的點(diǎn)x,y在平面直角坐標(biāo)系中的位置是__________;在平面直角坐標(biāo)系中,如果mn>0,請(qǐng)寫出點(diǎn)m,|n|可能在的所有象限:____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=ax2+bx+4 與x軸交于點(diǎn)A(﹣3,0)和B(2,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)如圖1,若點(diǎn)D為CB的中點(diǎn),將線段DB繞點(diǎn)D旋轉(zhuǎn),點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)G,當(dāng)點(diǎn)G恰好落在拋物線的對(duì)稱軸上時(shí),求點(diǎn)G的坐標(biāo);
(3)如圖2,若點(diǎn)D為直線BC或直線AC上的一點(diǎn),E為x軸上一動(dòng)點(diǎn),拋物線
y=ax2+bx+4對(duì)稱軸上是否存在點(diǎn)F,使以B,D,F(xiàn),E為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形ABC為一個(gè)電子跳蚤游戲盤,其中AB=8,AC=9,BC=10.如果電子跳蚤開始時(shí)在BC邊上的點(diǎn)P0處,BP0=4,第一步跳蚤從點(diǎn)P0處跳到AC邊上的點(diǎn)P1處,且CP1=CP0;第二步跳蚤從點(diǎn)P1處跳到AB邊上的點(diǎn)P2處,且AP1=AP2;第三步跳蚤從點(diǎn)P2處跳回到BC邊上的點(diǎn)P3處,且BP3=BP2……若跳蚤按上述規(guī)則跳下去,第n次的落點(diǎn)為Pn,則點(diǎn)P3與點(diǎn)P2019之間的距離為( )
A. 0 B. 1 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】不透明的口袋里裝有紅、黃、藍(lán)三種顏色的小球(除顏色不同外,其它都一樣),其中紅球2個(gè),藍(lán)球1個(gè),現(xiàn)在從中任意摸出一個(gè)紅球的概率為 .
(1)求袋中黃球的個(gè)數(shù);
(2)第一次摸出一個(gè)球(不放回),第二次再摸出一個(gè)球,請(qǐng)用樹狀圖或列表法求兩次摸出的都是紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在等腰Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于點(diǎn)D.點(diǎn)P為線段CD上一點(diǎn)(不與端點(diǎn)C、D重合),PE⊥PA,PE與BC的延長(zhǎng)線交于點(diǎn)E,與AC交于點(diǎn)F,連接AE、AP、BP.
(1)求證:AP=BP;
(2)求∠EAP的度數(shù);
(3)探究線段EC、PD之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=30°,點(diǎn)D是BC邊上的點(diǎn),CD= 3,將△ABC沿直線AD翻折,使點(diǎn)C落在AB邊上的點(diǎn)E處,若點(diǎn)P是直線AD上的動(dòng)點(diǎn),PE+PB的最小值 ______
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com