【題目】20191月重慶湖童時(shí)裝周在重慶渝北舉行了八場走秀,云集了八大國內(nèi)外潮童品牌,不僅為大家?guī)砹艘粓銎放谱咝闶?huì),更讓人們將目光轉(zhuǎn)移到了后、后童模群體身上,開啟服裝新秀湖流.某大型商場抓住這次商機(jī)購進(jìn)兩款新童裝進(jìn)行試銷售,該商場用元購買款童裝,用元購買款童裝,且每件款童裝進(jìn)價(jià)與每件款童裝進(jìn)價(jià)相同,購買款童裝的數(shù)量比款童裝的數(shù)量少件,若該商場本次以每件款童裝按進(jìn)價(jià)加價(jià)元進(jìn)行銷售,每件款童裝按進(jìn)價(jià)加價(jià)進(jìn)行銷售,全部銷售完.

1)求購進(jìn)兩款童裝各多少件?

2)春節(jié)期間該商場按上次進(jìn)價(jià)又購進(jìn)與上一次一樣數(shù)量的兩款童裝,并展開了降價(jià)促銷活動(dòng),在促銷期間,該商場將每件款童裝按進(jìn)價(jià)提高進(jìn)行銷售,每件款童裝按上次售價(jià)降低銷售.結(jié)果全部銷售完后銷售利潤比上次利潤少了元,求的值.

【答案】1購進(jìn)款童裝40件,購進(jìn)款童裝60件;230

【解析】

1)設(shè)購進(jìn)款童裝件,則購進(jìn)款童裝件,根據(jù)單價(jià)總價(jià)數(shù)量結(jié)合每件款童裝進(jìn)價(jià)與每件款童裝進(jìn)價(jià)相同,即可得出關(guān)于的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論;

2)利用單價(jià)總價(jià)數(shù)量可求出、兩款童裝的進(jìn)價(jià),再由總價(jià)單價(jià)數(shù)量結(jié)合第二次全部銷售完后銷售總額比第一次少了3040元,即可得出關(guān)于的一元一次方程,即可得出結(jié)論.

解:(1)設(shè)購進(jìn)款童裝件,則購進(jìn)款童裝件,

由題意得:,

解得:

經(jīng)檢驗(yàn),是分式方程的解,且符合題意,

答:購進(jìn)款童裝40件,購進(jìn)款童裝60件.

2、兩款童裝的進(jìn)價(jià)為(元

由題意得:,

整理,得:,

解得:

答:的值為30

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=30°,OP平分∠AOB,PCOBOA于點(diǎn)C,PDOB于點(diǎn)D,如果PC=6,那么PD的長是_________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本學(xué)期我們學(xué)習(xí)了一元一次方程的解法,下面是小亮同學(xué)的解題過程:

解方程:

解:方程兩邊同時(shí)乘以15,去分母,得320x3)﹣510x+4)=15……

去括號(hào),得60x950x+2015……

移項(xiàng),得60x50x15+920……

合并同類項(xiàng),得10x4……

系數(shù)化1,得x0.4……

所以x0.4原方程的解

1)上述小亮的解題過程從第   (填序號(hào))步開始出現(xiàn)錯(cuò)誤,錯(cuò)誤的原因是   

2)請(qǐng)寫出此題正確的解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:

1)如圖1,將長方形紙片ABFE沿著線段DC折疊,CFAD于點(diǎn)H,過點(diǎn)HHGDC,交線段CB于點(diǎn)G

①判斷∠FHG與∠EDC是否相等,并說明理由;

②說明HG平分∠AHC的理由.

2)如圖2,如果將(1)中的已知條件改為折疊三角形紙片ABE,其它條件不變.HG是否平分∠AHC?如果平分請(qǐng)說明理由;如果不平分,請(qǐng)找出∠CHG,∠AHG與∠E的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABD,∠ACD的角平分線交于點(diǎn)P,若∠A50°,∠D10°,求∠P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程kx2+(2k+1)x+2=0.
(1)求證:無論k取任何實(shí)數(shù)時(shí),方程總有實(shí)數(shù)根.
(2)是否存在實(shí)數(shù)k使方程兩根的倒數(shù)和為2?若存在,請(qǐng)求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y= 的圖象與二次函數(shù)y=﹣x2+bx+c的圖象在第一象限內(nèi)相交A、B兩點(diǎn),A、B兩點(diǎn)的縱坐標(biāo)分別為1,3,且AB=2

(1)求反比例函數(shù)的解析式;
(2)求二次函數(shù)的解析式;
(3)如果M為x軸上一點(diǎn),N為y軸上一點(diǎn),以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形,試求直線MN的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列例題的解題過程,并完成相關(guān)問題

例:如圖,在四邊形ABCD中,ADBC,∠B90°,AB8 cmAD12cm,BC18cm,點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度向點(diǎn)D運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C同時(shí)出發(fā),以2cm/s的速度向點(diǎn)B運(yùn)動(dòng).規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).從運(yùn)動(dòng)開始,使PQCDPQCD,分別經(jīng)過多長時(shí)間?為什么?

解:設(shè)經(jīng)過ts時(shí),PQCDPQCD,此時(shí)四邊形PQCD為平行四邊形.

PD=(12tcm,CQ2t cm

12t2t.∴t4

∴當(dāng)t4時(shí),PQCD,且PQCD

設(shè)經(jīng)過ts時(shí),PQCD,分別過點(diǎn)P,DBC邊的垂線PE,DF,垂足分別為E,F

當(dāng)CFEQ時(shí),四邊形PQCD為梯形(腰相等)或者平行四邊形.

∵∠B=∠A=∠DFB90°

∴四邊形ABFD是矩形.∴ADBF

AD12 cm,BC18 cm

CFBCBF6 cm

當(dāng)四邊形PQCD為梯形(腰相等)時(shí),

PD2BCAD)=CQ,

∴(12t)+122t.∴t8

∴當(dāng)t8時(shí),PQCD

當(dāng)四邊形PQCD為平行四邊形時(shí),由知當(dāng)t4時(shí),PQCD

綜上,當(dāng)t4時(shí),PQCD;當(dāng)t4t8時(shí),PQCD

問題1:在整個(gè)運(yùn)動(dòng)過程中是否存在t值,使得四邊形PQCD是菱形?若存在,請(qǐng)求出t值;若不存在,請(qǐng)說明理由.

問題2:從運(yùn)動(dòng)開始,當(dāng)t取何值時(shí),四邊形PQBA是矩形?

問題3:在整個(gè)運(yùn)動(dòng)過程中是否存在t值,使得四邊形PQBA是正方形?若存在,請(qǐng)求出t值;若不存在,請(qǐng)說明理由.

問題4:是否存在t,使得△DQC是等腰三角形?若存在,請(qǐng)求出t值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知FGAB,CDAB,垂足分別為G,D,∠1=∠2

求證:∠CED+ACB180°,

請(qǐng)你將小明的證明過程補(bǔ)充完整.

證明:∵FGAB,CDAB,垂足分別為G,D(已知)

∴∠FGB=∠CDB90°(   )

GFCD(   )

GFCD(已證)

∴∠2=∠BCD(   )

又∵∠1=∠2(已知)

∴∠1=∠BCD(   )

   (   )

∴∠CED+ACB180°(   )

查看答案和解析>>

同步練習(xí)冊(cè)答案