【題目】洋芋是大多數(shù)云南人都喜愛的食品,現(xiàn)有20袋洋芋,以每袋450斤為標準,超過或不足的斤數(shù)分別用正、負數(shù)來表示,與標準質量的差值記錄如表:
每袋與標準質量的差值(斤) | ﹣5 | ﹣2 | 0 | 1 | 3 | 6 |
袋數(shù) | 1 | 4 | 3 | 4 | 5 | 3 |
(1)這20袋洋芋中,最重的一袋比最輕的一袋重幾斤?
(2)這20袋洋芋的平均質量比標準質量多還是少?多或少幾斤?
(3)求這20袋洋芋的總質量.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①所示是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖②的方式拼成一個正方形.
(1)圖②中的大正方形的邊長為 ;陰影部分的正方形的邊長為 ;
(2)請用兩種方式表示圖②中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)圖象的頂點坐標為(0,1),且過點(﹣1, ),直線y=kx+2與y軸相交于點P,與二次函數(shù)圖象交于不同的兩點A(x1 , y1),B(x2 , y2). (注:在解題過程中,你也可以閱讀后面的材料)
附:閱讀材料
任何一個一元二次方程的根與系數(shù)的關系為:兩根的和等于一次項系數(shù)與二次項系數(shù)的比的相反數(shù),兩根的積等于常數(shù)項與二次項系數(shù)的比.
即:設一元二次方程ax2+bx+c=0的兩根為x1 , x2 ,
則:x1+x2=﹣ ,x1x2=
能靈活運用這種關系,有時可以使解題更為簡單.
例:不解方程,求方程x2﹣3x=15兩根的和與積.
解:原方程變?yōu)椋簒2﹣3x﹣15=0
∵一元二次方程的根與系數(shù)有關系:x1+x2=﹣ ,x1x2=
∴原方程兩根之和=﹣ =3,兩根之積= =﹣15.
(1)求該二次函數(shù)的解析式.
(2)對(1)中的二次函數(shù),當自變量x取值范圍在﹣1<x<3時,請寫出其函數(shù)值y的取值范圍;(不必說明理由)
(3)求證:在此二次函數(shù)圖象下方的y軸上,必存在定點G,使△ABG的內切圓的圓心落在y軸上,并求△GAB面積的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,正方形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標為(2,2),反比例函數(shù)(x>0,k≠0)的圖像經(jīng)過線段BC的中點D.
(1)求k的值;
(2)若點P(x,y)在該反比例函數(shù)的圖像上運動(不與點D重合),過點P作PR⊥y軸于點R,作PQ⊥BC所在直線于點Q,記四邊形CQPR的面積為S,求S關于x的解析式并寫出x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A=3a2b﹣2ab2+abc,小明同學錯將“2A﹣B“看成”2A+B“,算得結果為4a2b﹣3ab2+4abc.
(1)計算B的表達式;
(2)求出2A﹣B的結果;
(3)小強同學說(2)中的結果的大小與c的取值無關,對嗎?若a=,b=,
求(2)中式子的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在平面直角坐標系中,網(wǎng)格中每一個小正方形的邊長為1個單位長度;已知△ABC.
(1)作出△ABC以O為旋轉中心,順時針旋轉90°的△A1B1C1 , (只畫出圖形).
(2)作出△ABC關于原點O成中心對稱的△A2B2C2 , (只畫出圖形),寫出B2和C2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)圖象如圖所示,根據(jù)圖象可得:
(1)拋物線頂點坐標;
(2)對稱軸為
(3)當x=時,y有最大值是;
(4)當時,y隨著x得增大而增大.
(5)當時,y>0.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,左面的幾何體叫三棱柱,它有五個面,條棱,個頂點,中間和右邊的幾何體分別是四棱柱和五棱柱.
四棱柱有________個頂點,________條棱,________個面;
五棱柱有________個頂點,________條棱,________個面;
你能由此猜出,六棱柱、七棱柱各有幾個頂點,幾條棱,幾個面嗎?
棱柱有幾個頂點,幾條棱,幾個面嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值,如果不能,說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com