【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線.
(1)求證:△ADE≌△CBF;
(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.
【答案】(1)證明見解析;(2)若∠ADB是直角,則四邊形BEDF是菱形,理由見解析.
【解析】試題(1)由四邊形ABCD是平行四邊形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分別為邊AB、CD的中點(diǎn),可證得AE=CF,然后由SAS,即可判定△ADE≌△CBF;
(2)先證明BE與DF平行且相等,然后根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形,再連接EF,可以證明四邊形AEFD是平行四邊形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根據(jù)菱形的判定可以得到四邊形是菱形.
試題解析:(1)證明:∵四邊形ABCD是平行四邊形,
∴AD=BC,AB=CD,∠A=∠C,
∵E、F分別為邊AB、CD的中點(diǎn),
∴AE=AB,CF=CD,
∴AE=CF,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(SAS);
(2)若∠ADB是直角,則四邊形BEDF是菱形,理由如下:
解:由(1)可得BE=DF,
又∵AB∥CD,
∴BE∥DF,BE=DF,
∴四邊形BEDF是平行四邊形,
連接EF,在ABCD中,E、F分別為邊AB、CD的中點(diǎn),
∴DF∥AE,DF=AE,
∴四邊形AEFD是平行四邊形,
∴EF∥AD,
∵∠ADB是直角,
∴AD⊥BD,
∴EF⊥BD,
又∵四邊形BFDE是平行四邊形,
∴四邊形BFDE是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,制作一種產(chǎn)品的同時(shí),需要將原材料加熱,設(shè)該材料溫度為y℃,從加熱開始計(jì)算的時(shí)間為x分鐘,據(jù)了解,該材料在加熱過程中溫度y與時(shí)間x成一次函數(shù)關(guān)系,已知該材料在加熱前的溫度為15℃,加熱5分鐘使材料溫度達(dá)到60℃時(shí)停止加熱.停止加熱后,材料溫度逐漸下降,這時(shí)溫度y與時(shí)間x成反比例函數(shù)關(guān)系.
(1)分別求出該材料加熱過程中和停止加熱后y與x之間的函數(shù)表達(dá)式,并寫出x的取值范圍;
(2)根據(jù)工藝要求,在材料溫度不低于30℃的這段時(shí)間內(nèi),需要對(duì)該材料進(jìn)行特殊處理,那么對(duì)該材料進(jìn)行特殊處理所用的時(shí)間是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2).
(1)寫出點(diǎn)A、B的坐標(biāo):
(2)將△ABC先向左平移2個(gè)單位長度,再向上平移1個(gè)單位長度,得到△A′B′C′,則A′B′C′的三個(gè)頂點(diǎn)坐標(biāo)分別是A′(,)、B′(,)、C′(,).
(3)△ABC的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:如圖1,在平面內(nèi)選一定點(diǎn)O,引一條有方向的射線Ox,再選定一個(gè)單位長度,那么平面上任一點(diǎn)M的位置可由∠MOx的度數(shù)θ與OM的長度m確定,有序數(shù)對(duì)(θ,m)稱為M點(diǎn)的“極坐標(biāo)”,這樣建立的坐標(biāo)系稱為“極坐標(biāo)系”. 應(yīng)用:在圖2的極坐標(biāo)系下,如果正六邊形的邊長為2,有一邊OA在射線Ox上,則正六邊形的頂點(diǎn)C的極坐標(biāo)應(yīng)記為( )
A.(60°,4)
B.(45°,4)
C.(60°,2 )
D.(50°,2 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一次函數(shù)y=kx+b的圖象,以下說法中正確的是( )
A. 直線與y軸的交點(diǎn)為(3,0) B. y隨x的增大而增大
C. 直線與兩坐標(biāo)軸圍成的三角形面積是6 D. 一元一次方程kx+b=0的解為x=2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,有一個(gè)菱形BFDE(點(diǎn)E,F(xiàn)分別在線段AB,CD上),記它們的面積分別為SABCD和SBFDE , 現(xiàn)給出下列命題:①若 = ,則tan∠EDF= ;②若DE2=BDEF,則DF=2AD,則( )
A.①是假命題,②是假命題
B.①是真命題,②是假命題
C.①是假命題,②是真命題
D.①是真命題,②是真命題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程(組)解應(yīng)用題
(1)某中學(xué)組織初一學(xué)生春游,原計(jì)劃租用45座汽車若干輛,但有15人沒有座位;若租用同樣數(shù)量的60座汽車,則比45座汽車多出一輛無人乘坐,但其余客車恰好坐滿.問初一年級(jí)人數(shù)是多少?原計(jì)劃租用45座汽車多少輛?
(2)《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作,記有許多有趣而又不乏技巧的算術(shù)程式,其中記載:“今有甲、乙二人,持錢各不知數(shù).甲得乙中半,可滿四十八.乙得甲太半,亦滿四十八,問甲、乙二人原持錢各幾何?”譯文:“甲,乙兩人各有若干錢.如果甲得到乙所有錢的一半,那么甲共有錢48文,如果乙得到甲所有錢的,那么乙也共有錢48文,問甲,乙二人原來各有多少錢?”
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com