【題目】某校為災區(qū)開展了“獻出我們的愛”賑災捐款活動,九年級(1)班50名同學積極參加了這次賑災捐款活動,因不慎,表中數(shù)據(jù)有一處被墨水污染,已無法看清,但已知全班平均每人捐款38元.
捐款(元) | 10 | 15 | 30 | 50 | 60 | |
人數(shù) | 3 | 6 | 11 | 11 | 13 | 6 |
(1)根據(jù)以上信息可知,被污染處的數(shù)據(jù)為 .
(2)該班捐款金額的眾數(shù)為 ,中位數(shù)為 .
(3)如果用九年級(1)班捐款情況作為一個樣本,請估計全校2000人中捐款在40元以上(包括40元)的人數(shù)是多少?
科目:初中數(shù)學 來源: 題型:
【題目】如圖已知AB∥CD,P為直線AB,CD外一點,BF平分∠ABP,DE平分∠CDP,BF的反向延長線交DE于點E.
(1)∠ABP,∠P和∠PDC的數(shù)量關(guān)系為 ;
(2)若∠BPD=80°,求∠BED的度數(shù);
(3)∠P與∠E的數(shù)量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC⊥BC,AD⊥DB,下列條件中: ①∠ABD=∠BAC;②∠DAB=∠CBA;③AD=BC;④∠DAC=∠CBD,能使△ABC≌△BAD的有_____(把所有正確結(jié)論的序號都填在橫線上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于,兩點.
(1)試確定上述反比例函數(shù)和一次函數(shù)的表達式;
(2)當為何值時反比例函數(shù)值大于一次函數(shù)的值;
(3)當為何值時一次函數(shù)值大于比例函數(shù)的值;
(4)求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】勾股定理是人類最偉大的十個科學發(fā)現(xiàn)之一,西方國家稱之為畢達哥拉斯定理,但遠在畢達哥拉斯出生之前,這一定理早已被人們所利用,世界上各個文明古國都對勾股定理的發(fā)現(xiàn)和研究作出過貢獻(希臘、中國、埃及、巴比倫、印度等),特別是定理的證明,據(jù)說有400余種方法.其中在《幾何原本》中有一種證明勾股定理的方法:如圖所示,作CG⊥FH,垂足為G,交AB于點P,延長FA交DE于點S,然后將正方形ACED、正方形BCNM作等面積變形,得S正方形ACED=SACQS,S正方形BCNM=SBCQT,這樣就可以完成勾股定理的證明.對于該證明過程,下列結(jié)論錯誤的是( )
A. △ADS≌△ACB B. SACQS=S矩形APGF
C. SCBTQ=S矩形PBHG D. SE=BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列兩個等式:,給出定義如下:我們稱使等式a﹣b=2ab﹣1成立的一對有理數(shù)a,b為“同心有理數(shù)對”,記為(a,b),如:數(shù)對(1,),(2,),都是“同心有理數(shù)對”.
(1)數(shù)對(﹣2,1),(3,)是 “同心有理數(shù)對”的是__________.
(2)若(a,3)是“同心有理數(shù)對”,求a的值;
(3)若(m,n)是“同心有理數(shù)對”,則(﹣n,﹣m) “同心有理數(shù)對”(填“是”或“不是”),說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車從城出發(fā)勻速行駛至城在個行駛過程中甲乙兩車離開城的距離(單位:千米)與甲車行駛的時間(單位:小時)之間的函數(shù)關(guān)系如圖所示.則下列結(jié)論: ①兩城相距千米;②乙車比甲車晚出發(fā)小時,卻早到小時;③乙車出發(fā)后小時追上甲車;④在乙車行駛過程中.當甲、乙兩車相距千米時,或,其中正確的結(jié)論是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以下是八(1)班學生身高的統(tǒng)計表和扇形統(tǒng)計圖,請回答以下問題:
(1)求出統(tǒng)計表和統(tǒng)計圖缺的數(shù)據(jù).
(2)八(1)班學生身高這組數(shù)據(jù)的中位數(shù)落在第幾組?
(3)如果現(xiàn)在八(1)班學生的平均身高是1.63m,已確定新學期班級轉(zhuǎn)來兩名新同學,新同學的身高分別是1.54m和1.77m,那么這組新數(shù)據(jù)的中位數(shù)落在第幾組?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(),在四邊形中,,,,,分別是,上的點,且.探究圖中線段,,之間的數(shù)量關(guān)系.小王同學探究此問題的方法是,延長到點,使,連接,先證明≌,再證明≌,可得出結(jié)論,他的結(jié)論應該是__________.
如圖(),若在四邊形中,,,,分別是,上的點,且,上述結(jié)論是否仍然成立,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com