【題目】如圖所示,在等邊中,點D、E分別在邊BC、AB上,且,AD與CE交于點F,則的度數(shù)為
A.B.C.D.
【答案】A
【解析】
因為△ABC為等邊三角形,所以∠BAC=∠ABC=∠BCA=60°,AB=BC=AC,根據(jù)SAS易證△ABD≌△CAE,則∠BAD=∠ACE,再根據(jù)三角形內(nèi)角和定理求得∠DFC的度數(shù).
解:∵△ABC為等邊三角形
∴∠BAC=∠ABC=∠BCA=60°
∴AB=BC=AC
在△ABD和△CAE中,BD=AE,∠ABD=∠CAE,AB=AC
∴△ABD≌△CAE
∴∠BAD=∠ACE
又∵∠BAD+∠DAC=∠BAC=60°
∴∠ACE+∠DAC=60
∵∠ACE+∠DAC+∠AFC=180°
∴∠AFC=120
∵∠AFC+∠DFC=180
∴∠DFC=60°.
故選A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形底邊的長為,面積是,腰的垂直平分線交于點,若為邊上的中點,為線段上一動點,則的周長的最小值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點A、O、B的對應(yīng)點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A(1,a)是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象的交點為點B、D,且B(3,﹣1),求:
(1)求反比例函數(shù)的解析式;
(2)求點D坐標(biāo),并直接寫出y1>y2時x的取值范圍;
(3)動點P(x,0)在x軸的正半軸上運動,當(dāng)線段PA與線段PB之差達到最大時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)解下列方程:①x2﹣2x﹣2=0;②2x2+3x﹣1=0;③2x2﹣4x+1=0;④x2+6x+3=0;
(2)上面的四個方程中,有三個方程的一次項系數(shù)有共同特點,請你用代數(shù)式表示這個特點,并推導(dǎo)出具有這個特點的一元二次方程的求根公式_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組數(shù)的三個數(shù),可作為三邊長構(gòu)成直角三角形的是( )
A.1,2,3B.32,42,52C.,,D.6,8,10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋里裝有四個分別標(biāo)有1、2、3、4的小球,它們的形狀、大小等完全相同.小明先從口袋里隨機不放回地取出一個小球,記下數(shù)字為x;小紅在剩下有三個小球中隨機取出一個小球,記下數(shù)字y.
(1)計算由x、y確定的點(x,y)在函數(shù)y=﹣x+6圖象上的概率;
(2)小明、小紅約定做一個游戲,其規(guī)則是:若x、y滿足xy>6,則小明勝;若x、y滿足xy<6,則小紅勝.這個游戲規(guī)則公平嗎?說明理由;若不公平,怎樣修改游戲規(guī)則才對雙方公平?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)y=+x的圖象與性質(zhì)進行了探究,探究過程如下,請補充完整.
(1)函數(shù)y=+x的自變量x的取值范圍是 ;
(2)下表是y與x的幾組對應(yīng)值.
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 2 | 3 | 4 | 5 | … | ||||
y | … | ﹣ | ﹣ | ﹣ | ﹣1 | ﹣ | ﹣ | 3 | m |
| … |
求m的值;
(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點,根據(jù)描出的點,畫出該函數(shù)的圖象;
(4)進一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點的坐標(biāo)是(2,3),結(jié)合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(一條即可): .
(5)小明發(fā)現(xiàn),①該函數(shù)的圖象關(guān)于點( , )成中心對稱;
②該函數(shù)的圖象與一條垂直于x軸的直線無交點,則這條直線為 ;
③直線y=m與該函數(shù)的圖象無交點,則m的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為,連接AC、BD交于點O,CE平分∠ACD交BD于點E,
(1)求DE的長;
(2)過點EF作EF⊥CE,交AB于點F,求BF的長;
(3)過點E作EG⊥CE,交CD于點G,求DG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com