【題目】如圖所示,在等邊中,點D、E分別在邊BCAB上,且,ADCE交于點F,則的度數(shù)為  

A.B.C.D.

【答案】A

【解析】

因為△ABC為等邊三角形,所以∠BAC=∠ABC=∠BCA=60°AB=BC=AC,根據(jù)SAS易證△ABD≌△CAE,則∠BAD=∠ACE,再根據(jù)三角形內(nèi)角和定理求得∠DFC的度數(shù).

解:∵△ABC為等邊三角形

∴∠BAC=∠ABC=∠BCA=60°

∴AB=BC=AC

△ABD△CAE中,BD=AE,∠ABD=∠CAE,AB=AC

∴△ABD≌△CAE

∴∠BAD=∠ACE

∵∠BAD+∠DAC=∠BAC=60°

∴∠ACE+∠DAC=60

∵∠ACE+∠DAC+∠AFC=180°

∴∠AFC=120

∵∠AFC+∠DFC=180

∴∠DFC=60°

故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形底邊的長為,面積是,腰的垂直平分線于點,若邊上的中點,為線段上一動點,則的周長的最小值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點D的橫坐標(biāo)為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到A1O1B1,點A、O、B的對應(yīng)點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知點A(1,a是反比例函數(shù)的圖象上一點直線與反比例函數(shù)的圖象的交點為點B、D,B(3,﹣1),

(1)求反比例函數(shù)的解析式;

(2)求點D坐標(biāo)并直接寫出y1y2x的取值范圍;

(3)動點Px,0)x軸的正半軸上運動,當(dāng)線段PA與線段PB之差達到最大時,求點P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)解下列方程:①x2﹣2x﹣2=0;2x2+3x﹣1=0;2x2﹣4x+1=0;x2+6x+3=0;

(2)上面的四個方程中,有三個方程的一次項系數(shù)有共同特點,請你用代數(shù)式表示這個特點,并推導(dǎo)出具有這個特點的一元二次方程的求根公式_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各組數(shù)的三個數(shù),可作為三邊長構(gòu)成直角三角形的是(  )

A.1,2,3B.32,4252C.,D.6,810

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的口袋里裝有四個分別標(biāo)有1、2、3、4的小球,它們的形狀、大小等完全相同.小明先從口袋里隨機不放回地取出一個小球,記下數(shù)字為x;小紅在剩下有三個小球中隨機取出一個小球,記下數(shù)字y.

(1)計算由x、y確定的點(x,y)在函數(shù)y=﹣x+6圖象上的概率;

(2)小明、小紅約定做一個游戲,其規(guī)則是:若x、y滿足xy>6,則小明勝;若x、y滿足xy<6,則小紅勝.這個游戲規(guī)則公平嗎?說明理由;若不公平,怎樣修改游戲規(guī)則才對雙方公平?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)y+x的圖象與性質(zhì)進行了探究,探究過程如下,請補充完整.

(1)函數(shù)y+x的自變量x的取值范圍是   

(2)下表是yx的幾組對應(yīng)值.

x

3

2

1

0

2

3

4

5

y

1

3

m

m的值;

(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點,根據(jù)描出的點,畫出該函數(shù)的圖象;

(4)進一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點的坐標(biāo)是(2,3),結(jié)合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(一條即可)   

(5)小明發(fā)現(xiàn),該函數(shù)的圖象關(guān)于點(   ,   )成中心對稱;

該函數(shù)的圖象與一條垂直于x軸的直線無交點,則這條直線為   ;

直線ym與該函數(shù)的圖象無交點,則m的取值范圍為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為,連接AC、BD交于點O,CE平分∠ACD交BD于點E,

(1)求DE的長;

(2)過點EF作EF⊥CE,交AB于點F,求BF的長;

(3)過點E作EG⊥CE,交CD于點G,求DG的長.

查看答案和解析>>

同步練習(xí)冊答案