【題目】如圖,兩個(gè)同心圓,大圓半徑為5cm,小圓的半徑為3cm,若大圓的弦AB與小圓相交,則弦AB的取值范圍是   

【答案】8AB≤10。

【解析】

首先要弄清楚AB在什么時(shí)候最大,什么時(shí)候最。(dāng)AB與小圓相切時(shí)有一個(gè)公共點(diǎn),此時(shí)可知AB最。划(dāng)AB經(jīng)過同心圓的圓心時(shí),弦AB最大且與小圓相交有兩個(gè)公共點(diǎn),此時(shí)AB最大,由此可以確定所以AB的取值范圍:

如圖,當(dāng)AB與小圓相切時(shí)有一個(gè)公共點(diǎn)D,連接OAOD,可得OD⊥AB,

∴DAB的中點(diǎn),即ADBD。

Rt△ADO中,OD3OA5,∴AD4∴AB2AD8。

當(dāng)AB經(jīng)過同心圓的圓心時(shí),弦AB最大且與小圓相交有兩個(gè)公共點(diǎn),此時(shí)AB10。

∴AB的取值范圍是8AB≤10。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,圓錐的母線長6cm,底面半徑是3cm,在B處有一只螞蟻,在AC中點(diǎn)P處有一顆米粒,螞蟻從B爬到P處的最短距離是( 。

A. 3cm B. 3cm C. 9cm D. 6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ADBCD,下列條件①∠B+DAC=90°;②∠B=DAC;=;AB2=BDBC . 其中一定能夠判定ABC是直角三角形的有( )個(gè).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形,在上取兩點(diǎn)左邊),以為邊作等邊三角形,使頂點(diǎn)上.

(1)PEF的邊長;

(2)PEF的邊在線段上移動.分別交于點(diǎn)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周末,小華和小亮想用所學(xué)的數(shù)學(xué)知識測量家門前小河的寬.測量時(shí),他們選擇了河對岸邊的一棵大樹,將其底部作為點(diǎn)A,在他們所在的岸邊選擇了點(diǎn)B,使得AB與河岸垂直,并在B點(diǎn)豎起標(biāo)桿BC,再在AB的延長線上選擇點(diǎn)D豎起標(biāo)桿DE,使得點(diǎn)E與點(diǎn)C、A共線.

已知:CBAD,EDAD,測得BC=1mDE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據(jù)相關(guān)測量信息,求河寬AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,E為BC上一點(diǎn),以CE為直徑作O,AB與O相切于點(diǎn)D,連接CD,若BE=OE=2.

(1)求證:A=2DCB;

(2)求圖中陰影部分的面積(結(jié)果保留π和根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A是半徑為6cm的⊙O上的定點(diǎn),動點(diǎn)PA出發(fā),以πcm/s的速度沿圓周按順時(shí)針方向運(yùn)動,當(dāng)點(diǎn)P回到A時(shí)立即停止運(yùn)動.設(shè)點(diǎn)P運(yùn)動時(shí)間為t(s);

(1)當(dāng)t=6s時(shí),∠POA的度數(shù)是________;

(2)當(dāng)t為多少時(shí),∠POA=120°;

(3)如果點(diǎn)BOA延長線上的一點(diǎn),且AB=AO,問t為多少時(shí),POB為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AC=DC,ACDC,直線MN經(jīng)過點(diǎn)A,作DBMN,垂足為B,連接CB.

(1)直接寫出∠D與∠MAC之間的數(shù)量關(guān)系;

(2)①如圖1,猜想AB,BDBC之間的數(shù)量關(guān)系,并說明理由;

②如圖2,直接寫出AB,BDBC之間的數(shù)量關(guān)系;

(3)MN繞點(diǎn)A旋轉(zhuǎn)的過程中,當(dāng)∠BCD=30°,BD=時(shí),直接寫出BC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的直徑AB2AMBN是它的兩條切線,DEOE,交AMD,交BNC.設(shè)ADx,BCy

(1)求證:AMBN

(2)y關(guān)于x的關(guān)系式;

(3)求四邊形ABCD的面積S,并證明:S≥2

查看答案和解析>>

同步練習(xí)冊答案