【題目】如圖,直線y=x與雙曲線y=(k>0,x>0)交于點(diǎn)A,將直線y=x向上平移4個(gè)單位長(zhǎng)度后,與y軸交于點(diǎn)C,與雙曲線y=(k>0,x>0)交于點(diǎn)B.若OA=3BC,則k的值為 .
【答案】.
【解析】
試題分析:分別過(guò)點(diǎn)A、B作AD⊥x軸,BE⊥x軸,CF⊥BE于點(diǎn)F,再設(shè)A(3x, x),由于OA=3BC,故可得出B(x, x+4),再根據(jù)反比例函數(shù)中k=xy為定值求出k的值即可.分別過(guò)點(diǎn)A、B作AD⊥x軸,BE⊥x軸,CF⊥BE于點(diǎn)F,設(shè)A(3x, x),∵OA=3BC,BC∥OA,CF∥x軸,∴△BCF∽△AOD,∴CF=OD,∵點(diǎn)B在直線y=x+4上,∴B(x, x+4),∵點(diǎn)A、B在雙曲線y=上,∴3xx=x(x+4),解得x=1,∴k=3×1××1=.故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是邊長(zhǎng)為6的等邊三角形,P是AC邊上一動(dòng)點(diǎn),由A向C運(yùn)動(dòng)(與A、C不重合),Q是CB延長(zhǎng)線上一動(dòng)點(diǎn),與點(diǎn)P同時(shí)以相同的速度由B向CB延長(zhǎng)線方向運(yùn)動(dòng)(Q不與B重合),過(guò)P作PE⊥AB于E,PF∥BC交AB于F,連接PQ交AB于D.
(1)當(dāng)∠BQD=30°時(shí),求AP的長(zhǎng);
(2)當(dāng)運(yùn)動(dòng)過(guò)程中線段ED的長(zhǎng)始終保持不變,試求出ED的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,每個(gè)小方格都是邊長(zhǎng)為1的正方形,
(1)求四邊形ABCD的面積;
(2)求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,點(diǎn)P(x,y)的橫坐標(biāo)x的絕對(duì)值表示為|x|,縱坐標(biāo)y的絕對(duì)值表示為|y|,我們把點(diǎn)P(x,y)的橫坐標(biāo)與縱坐標(biāo)的絕對(duì)值之和叫做點(diǎn)P(x,y)的勾股值,記為 :P,即P=|x|+|y|(其中“+”是四則運(yùn)算中的加法).
(1)求點(diǎn)A(-1,3),B(+2, -2)的勾股值A(chǔ)、B;
(2)求滿足條件N=3的所有點(diǎn)N圍成的圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算題
(1)(﹣1)2012+(π﹣3.14)0﹣(﹣ )﹣1
(2)化簡(jiǎn)求值:(2x+y)2﹣(2x﹣y)(x+y)﹣2(x﹣2y)(x+2y),其中x= ,y=﹣2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品的標(biāo)價(jià)是6600元,按標(biāo)價(jià)的八折銷(xiāo)售時(shí),仍可獲利10%,則這種商品每件的進(jìn)價(jià)為( 。
A. 4800元 B. 4900元 C. 5200元 D. 5400元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一小球被拋出后,距離地面的高度h(米)和飛行時(shí)間t(秒)滿足下列函數(shù)解析式:h=﹣3(t﹣2)2+5,則小球距離地面的最大高度是( )
A.2米
B.3米
C.5米
D.6米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,圓柱的高是4厘米,當(dāng)圓柱底面半徑r(cm)變化時(shí),圓柱的體積V(cm3)也隨之變化.
(1)在這個(gè)變化過(guò)程中,自變量是 , 因變量是 .
(2)圓柱的體積V與底面半徑r的關(guān)系式是 .
(3)當(dāng)圓柱的底面半徑由2變化到8時(shí),圓柱的體積由cm3變化到cm3 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一周內(nèi),小明堅(jiān)持自測(cè)體溫,每天3次.測(cè)量結(jié)果統(tǒng)計(jì)如下表:
體溫(℃) | 36.1 | 36.2 | 36.3 | 36.4 | 36.5 | 36.6 | 36.7 |
次數(shù) | 2 | 3 | 4 | 6 | 3 | 1 | 2 |
則這些體溫的中位數(shù)是( )
A. 36.2℃B. 36.3℃C. 36.4℃D. 36.5℃
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com