【題目】如圖,將矩形ABCD沿EF折疊,使頂點(diǎn)C恰好落在AB邊的C'處,點(diǎn)D落在點(diǎn)D'處,C'D'交線段AE于點(diǎn)G.

1)求證:BC'F∽△AGC';

2)若C'AB的中點(diǎn),AB=6,BC=9,求AG的長.

【答案】1)證明見解析;(2.

【解析】試題分析:(1)由余角的性質(zhì)可得∠BF C'=A C'G,然后根據(jù)兩個(gè)角對(duì)應(yīng)相等的兩個(gè)三角形相似判斷;

(2)先由勾股定理求出BF的長,然后利用相似三角形的性質(zhì)列比例式求解.

1)證明:由題意可知∠A=B=GC'F=90°,

∴∠BF C'+B C'F= 90°,A C'G+B C'F= 90°,

∴∠BF C'=A C'G

BC'F∽△AGC'.

(2) 由勾股定理得,BF=4.

C'AB的中點(diǎn),AB=6,AC'=BC'=3.

由(1)得BC'F∽△AGC',

,即

AG=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA,PB分別與⊙O相切于點(diǎn)A,B,點(diǎn)M在PB上,且OM∥AP,MN⊥AP,垂足為N.

(1)求證:OM = AN;

(2)若⊙O的半徑R = 3,PA = 9,求OM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本題10光伏發(fā)電惠民生,據(jù)衢州晚報(bào)載,某家庭投資4萬元資金建造屋頂光伏發(fā)電站,遇到晴天平均每天可發(fā)電30,其他天氣平均每天可發(fā)電5度.已知某月(按30天計(jì))共發(fā)電550

1)求這個(gè)月晴天的天數(shù);

2)已知該家庭每月平均用電量為150,若按每月發(fā)電550度計(jì),至少需要幾年才能收回成本.(不計(jì)其他費(fèi)用結(jié)果取整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)n度后,得到△DEC,點(diǎn)D剛好落在AB邊上.

1)求n的值;

2)若FDE的中點(diǎn),判斷四邊形ACFD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,對(duì)角線AC6,BD8,M、N分別是BCCD上的動(dòng)點(diǎn),P是線段BD上的一個(gè)動(dòng)點(diǎn),則PMPN的最小值是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)為(1 ),現(xiàn)將等腰直角三角板直角頂點(diǎn)放在原點(diǎn)O,一個(gè)銳角頂點(diǎn)A在此二次函數(shù)的圖象上,而另一個(gè)銳角頂點(diǎn)B在第二象限,且點(diǎn)A的坐標(biāo)為(2,1.

1)求該二次函數(shù)的表達(dá)式;

2)判斷點(diǎn)B是否在此二次函數(shù)的圖象上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點(diǎn)C作直線lAB,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),直線PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線PB與直線AC交于點(diǎn)E.

(1)求∠BAC的度數(shù);

(2)當(dāng)點(diǎn)DAB上方,且CDBP時(shí),求證:PC=AC;

(3)在點(diǎn)P的運(yùn)動(dòng)過程中

①當(dāng)點(diǎn)A在線段PB的中垂線上或點(diǎn)B在線段PA的中垂線上時(shí),求出所有滿足條件的∠ACD的度數(shù);

②設(shè)⊙O的半徑為6,點(diǎn)E到直線l的距離為3,連結(jié)BD,DE,直接寫出BDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙、丙、丁四位同學(xué)給出了四種表示該長方形面積的多項(xiàng)式:

①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你認(rèn)為其中正確的有( )

A. ①② B. ③④ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用兩種正多邊形鋪滿地面,其中一種是正八邊形,則另一種正多邊形是( )。

A. 正三角形 B. 正四邊形 C. 正五邊形 D. 正六邊形

查看答案和解析>>

同步練習(xí)冊(cè)答案