【題目】如圖,將矩形ABCD沿EF折疊,使頂點(diǎn)C恰好落在AB邊的C'處,點(diǎn)D落在點(diǎn)D'處,C'D'交線段AE于點(diǎn)G.
(1)求證:△BC'F∽△AGC';
(2)若C'是AB的中點(diǎn),AB=6,BC=9,求AG的長(zhǎng).
【答案】(1)證明見解析;(2).
【解析】試題分析:(1)由余角的性質(zhì)可得∠BF C'=∠A C'G,然后根據(jù)兩個(gè)角對(duì)應(yīng)相等的兩個(gè)三角形相似判斷;
(2)先由勾股定理求出BF的長(zhǎng),然后利用相似三角形的性質(zhì)列比例式求解.
(1)證明:由題意可知∠A=∠B=∠GC'F=90°,
∴∠BF C'+∠B C'F= 90°,∠A C'G+∠B C'F= 90°,
∴∠BF C'=∠A C'G
∴△BC'F∽△AGC'.
(2) 由勾股定理得,∴BF=4.
∵ C'是AB的中點(diǎn),AB=6,∴AC'=BC'=3.
由(1)得△BC'F∽△AGC',
∴,即
∴AG=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA,PB分別與⊙O相切于點(diǎn)A,B,點(diǎn)M在PB上,且OM∥AP,MN⊥AP,垂足為N.
(1)求證:OM = AN;
(2)若⊙O的半徑R = 3,PA = 9,求OM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題10分)光伏發(fā)電惠民生,據(jù)衢州晚報(bào)載,某家庭投資4萬元資金建造屋頂光伏發(fā)電站,遇到晴天平均每天可發(fā)電30度,其他天氣平均每天可發(fā)電5度.已知某月(按30天計(jì))共發(fā)電550度.
(1)求這個(gè)月晴天的天數(shù);
(2)已知該家庭每月平均用電量為150度,若按每月發(fā)電550度計(jì),至少需要幾年才能收回成本.(不計(jì)其他費(fèi)用,結(jié)果取整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)n度后,得到△DEC,點(diǎn)D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點(diǎn),判斷四邊形ACFD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,對(duì)角線AC=6,BD=8,M、N分別是BC、CD上的動(dòng)點(diǎn),P是線段BD上的一個(gè)動(dòng)點(diǎn),則PM+PN的最小值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)為(1, ),現(xiàn)將等腰直角三角板直角頂點(diǎn)放在原點(diǎn)O,一個(gè)銳角頂點(diǎn)A在此二次函數(shù)的圖象上,而另一個(gè)銳角頂點(diǎn)B在第二象限,且點(diǎn)A的坐標(biāo)為(2,1).
(1)求該二次函數(shù)的表達(dá)式;
(2)判斷點(diǎn)B是否在此二次函數(shù)的圖象上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點(diǎn)C作直線l∥AB,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),直線PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線PB與直線AC交于點(diǎn)E.
(1)求∠BAC的度數(shù);
(2)當(dāng)點(diǎn)D在AB上方,且CD⊥BP時(shí),求證:PC=AC;
(3)在點(diǎn)P的運(yùn)動(dòng)過程中
①當(dāng)點(diǎn)A在線段PB的中垂線上或點(diǎn)B在線段PA的中垂線上時(shí),求出所有滿足條件的∠ACD的度數(shù);
②設(shè)⊙O的半徑為6,點(diǎn)E到直線l的距離為3,連結(jié)BD,DE,直接寫出△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙、丙、丁四位同學(xué)給出了四種表示該長(zhǎng)方形面積的多項(xiàng)式:
①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你認(rèn)為其中正確的有( )
A. ①② B. ③④ C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用兩種正多邊形鋪滿地面,其中一種是正八邊形,則另一種正多邊形是( )。
A. 正三角形 B. 正四邊形 C. 正五邊形 D. 正六邊形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com