精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知等邊OA1B1,頂點A1在雙曲線y=(x>0)上,點B1的坐標為(2,0).過B1B1A2OA1交雙曲線于點A2,過A2A2B2A1B1x軸于點B2,得到第二個等邊B1A2B2;過B2B2A3B1A2交雙曲線于點A3,過A3A3B3A2B2x軸于點B3,得到第三個等邊B2A3B3;以此類推,,則點B6的坐標為_____

【答案】(2,0).

【解析】根據等邊三角形的性質以及反比例函數圖象上點的坐標特征分別求出B2、B3、B4的坐標,得出規(guī)律,進而求出點B6的坐標.

如圖,作A2Cx軸于點C,設B1C=a,則A2C=a,

OC=OB1+B1C=2+a,A2(2+a,a).

∵點A2在雙曲線y=(x>0)上,

(2+a)a=,

解得a=﹣1,或a=﹣﹣1(舍去),

OB2=OB1+2B1C=2+2﹣2=2,

∴點B2的坐標為(2,0);

A3Dx軸于點D,設B2D=b,則A3D=b,

OD=OB2+B2D=2+b,A2(2+b,b).

∵點A3在雙曲線y=(x>0)上,

(2+b)b=,

解得b=﹣+,或b=﹣(舍去),

OB3=OB2span>+2B2D=2﹣2+2=2,

∴點B3的坐標為(2,0);

同理可得點B4的坐標為(2,0)即(4,0);

…,

∴點Bn的坐標為(2,0),

∴點B6的坐標為(2,0),

故答案為:(2,0).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在學校開展的數學活動課上,小明和小剛制作了一個正三樓錐(質量均勻,四個面完全相同),并在各個面上分別標記數字1,2,3,4,游戲規(guī)則如下每人投擲三棱錐兩次,并記錄底面的數字,如果兩次所擲數字的和為單數,那么算小明贏,如果兩歡所擲數字的和為偶數,那么算小明贏;

(1)請用列表或者面樹狀圍的方法表示上述游戲中的所有可能結果.

(2)請分別隸出小明和小剛能贏的概率,并判新游戲的公平性.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ACB中,∠ACB=90°,AC=BC,點C的坐標為(﹣2,0),點A的坐標為(﹣6,3),求點B的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一位運動員在距籃下4m處跳起投籃,球運行的路線是拋物線,當球運行的水平距離是2.5m時,達到最大高度3.5m,然后準確落入籃圈.已知籃圈中心到地面的距離為3.05m.

(1)建立如圖所示的平面直角坐標系,求拋物線的解析式.

(2)該運動員身高1.8m,在這次跳投中,球在頭頂上0.25m處出手,

問:球出手時,他距離地面的高度是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點P是∠AOB內部的一點,∠AOB=30°,OP=8cmM,NOA,OB上的兩個動點,則△MPN周長的最小值_____cm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知港口A東偏南10°方向有一處小島B,一艘貨輪從港口A沿南偏東40°航線出發(fā),行駛80海里到達C處,此時觀測小島B在北偏東60°方向.

(1)求此時貨輪到小島B的距離.

(2)在小島周圍36海里范圍內是暗礁區(qū),此時輪船向正東方向航行有沒有觸礁危險?請作出判斷并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CDABH,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AGCDK

1)如圖1,求證:KE=GE;

2)如圖2,連接CABG,若∠FGB=ACH,求證:CAFE;

3)如圖3,在(2)的條件下,連接CGAB于點N,若sinE=,AK=,求CN的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB、AC分別是O的直徑和弦,ODAC于點D.過點A作O的切線與

OD的延長線交于點P,PC、AB的延長線交于點F.

(1)求證:PC是O的切線;

(2)若ABC=60°,AB=10,求線段CF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DC, AB=AC B.ADB=ADCBD=DC

C.B=C,BAD=CAD D. B=CBD=DC

查看答案和解析>>

同步練習冊答案