【題目】如圖,在RtABC中,∠ABC=,BC=6cm,AC=10cm。

1)求AB的長(zhǎng);

2)若P點(diǎn)從點(diǎn)B出發(fā),以2cm/s的速度在BC所在的直線上運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,那么當(dāng)t為何值時(shí),△ACP為等腰三角形。

【答案】1AB=8 cm;(2328

【解析】

1)直接利用勾股定理計(jì)算AB長(zhǎng)即可;
2)此題要分四種情況:當(dāng)P向左移動(dòng)時(shí):分CA=PA,AP=PC,PC=AC三種情況,當(dāng)P向右移動(dòng)時(shí),AC=CP分別計(jì)算出t的值即可.

1)∵∠ABC=90°,BC=6cm,AC=10cm,
AB=;
2)如圖所示:


當(dāng)P向左移動(dòng)時(shí),PB=2t,
①若AP=AC=10cm
則:BP=,
t=3
②若PC=AC=10cm,則BP=4cm,
2t=4,
解得:t=2;
③若AP=PC,則PC=6+2t,AP=6+2t,

解得:t=,
④當(dāng)P向右移動(dòng)時(shí),BP=2t,則CP=2t-6,


當(dāng)AC=CP時(shí),2t-6=10
解得:t=8
答:當(dāng)t3,2,8時(shí),△ACP為等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用28m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.若在P處有一棵樹(shù)與墻CD,AD的距離分別是15m和6m,要將這棵樹(shù)圍在花園內(nèi)(含邊界,不考慮樹(shù)的粗細(xì)),則花園面積S的最大值為_____m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E是正方形ABCDCD邊上一點(diǎn),以點(diǎn)A為中心把△ADE順時(shí)針旋轉(zhuǎn)90°。

(1)在圖中畫(huà)出旋轉(zhuǎn)后的圖形;

(2)若旋轉(zhuǎn)后E點(diǎn)的對(duì)應(yīng)點(diǎn)記為M,點(diǎn)FBC上,且∠EAF=45°,連接EF。

①求證:△AMF≌△AEF;

②若正方形的邊長(zhǎng)為6,AE=,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx-3軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),A(-1,0),B(3,0),直線與拋物線交于,兩點(diǎn),其中點(diǎn)的橫坐標(biāo)為。

(1)求拋物線的函數(shù)解析式;

(2)是線段上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作軸的平行線交拋物線于點(diǎn),求線段長(zhǎng)度的最大值;

(3)點(diǎn)是拋物線上的動(dòng)點(diǎn),在軸上是否存在點(diǎn),使,,,這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平面內(nèi)一點(diǎn)與一直線,如果過(guò)點(diǎn)作直線,垂足為,那么垂足叫做點(diǎn)在直線上的射影;如果線段的兩個(gè)端點(diǎn)在直線上的射影分別為點(diǎn),那么線段叫做線段在直線上的射影.

如圖,已知平面內(nèi)一點(diǎn)與一直線,如果過(guò)點(diǎn)作直線,垂足為,那么垂足叫做點(diǎn)在直線上的射影;如果線段的兩個(gè)端點(diǎn)在直線上的射影分別為點(diǎn),那么線段叫做線段在直線上的射影.

如圖②,、為線段外兩點(diǎn),,,垂足分別為、

點(diǎn)在上的射影是________點(diǎn),點(diǎn)在上的射影是________點(diǎn),

線段上的射影是________,線段上的射影是________

根據(jù)射影的概念,說(shuō)明:直角三角形斜邊上的高是兩條直角邊在斜邊上射影的比例中項(xiàng).(要求:畫(huà)出圖形,寫(xiě)出說(shuō)理過(guò)程.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一列快車(chē)從甲地勻速駛往乙地,一列慢車(chē)從乙地勻速駛往甲地.兩車(chē)行駛的時(shí)間為,兩車(chē)之間的距離為,圖中的折線表示之間的函數(shù)關(guān)系,根據(jù)圖象解決以下問(wèn)題:

1)甲、乙兩地的距離為 .

2)慢車(chē)的速度為 ,快車(chē)的速度為 ;

3)求當(dāng)為多少時(shí),兩車(chē)之間的距離為,請(qǐng)通過(guò)計(jì)算求出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有這樣一個(gè)問(wèn)題:探究函數(shù)的圖象與性質(zhì),小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究,下面是小東的探究過(guò)程,請(qǐng)補(bǔ)充完整:

1)下表是的幾組對(duì)應(yīng)值,則 .

2)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn). 根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;

3)當(dāng)時(shí),的增大而 ;當(dāng)時(shí),的最小值為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】水果店張阿姨以每斤2元的利潤(rùn)出售一種水果,每天可售出100斤,通過(guò)調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.2元,每天可多售出40斤,為保證每天至少售出260斤,張阿姨決定降價(jià)銷(xiāo)售.

(1)若將這種水果每斤的售價(jià)降低x元,則每天的銷(xiāo)售量是________斤(用含x的代數(shù)式表示);

(2)銷(xiāo)售這種水果要想每天贏利300元,張阿姨需將這種水果每斤的售價(jià)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】空地上有一段長(zhǎng)為a米的舊墻MN,某人利用舊墻和木欄圍成一個(gè)矩形菜園ABCD,已知木欄總長(zhǎng)為100米.

(1)已知a=20,矩形菜園的一邊靠墻,另三邊一共用了100米木欄,且圍成的矩形菜園面積為450平方米.如圖1,求所利用舊墻AD的長(zhǎng);

(2)已知0<α<50,且空地足夠大,如圖2.請(qǐng)你合理利用舊墻及所給木欄設(shè)計(jì)一個(gè)方案,使得所圍成的矩形菜園ABCD的面積最大,并求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案