【題目】若關(guān)于x的一元二次方程kx2+2x﹣1=0有實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是( 。

A. k≥﹣1 B. k>﹣1 C. k≥﹣1k≠0 D. k≠0

【答案】C

【解析】

根據(jù)方程根的情況可以判定其根的判別式的取值范圍,進(jìn)而可以得到關(guān)于k的不等式,解得即可,同時(shí)還應(yīng)注意二次項(xiàng)系數(shù)不能為0.

解:∵關(guān)于x的一元二次方程kx2+2x-1=0有實(shí)數(shù)根,

∴△=b2-4ac≥0,

即:4+4k≥0,

解得:k≥-1,

∵關(guān)于x的一元二次方程kx2-2x+1=0k≠0,

k≥-1k≠0,

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD中,點(diǎn)O是對(duì)角線(xiàn)DB的中點(diǎn),點(diǎn)P是DB所在直線(xiàn)上的一個(gè)動(dòng)點(diǎn),PE⊥BC于E,PF⊥DC于F.

(1)當(dāng)點(diǎn)P與點(diǎn)O重合時(shí)(如圖①),猜測(cè)AP與EF的數(shù)量及位置關(guān)系,并證明你的結(jié)論;
(2)當(dāng)點(diǎn)P在線(xiàn)段DB上(不與點(diǎn)D、O、B重合)時(shí)(如圖②),探究(1)中的結(jié)論是否成立?若成立,寫(xiě)出證明過(guò)程;若不成立,請(qǐng)說(shuō)明理由;
(3)當(dāng)點(diǎn)P在DB的長(zhǎng)延長(zhǎng)線(xiàn)上時(shí),請(qǐng)將圖③補(bǔ)充完整,并判斷(1)中的結(jié)論是否成立?若成立,直接寫(xiě)出結(jié)論;若不成立,請(qǐng)寫(xiě)出相應(yīng)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,已知⊙OABC的外接圓,AB為⊙O的直徑,AC=6cmBC=8cm.

(1)求⊙O的半徑;

(2)請(qǐng)用尺規(guī)作圖作出點(diǎn)P,使得點(diǎn)P優(yōu)弧CAB上時(shí),PBC的面積最大,請(qǐng)保留作圖痕跡,并求出PBC面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn):(x+1)(x﹣1)+1=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】寧波市2018年上半年地方財(cái)政收入約837.90億元,這個(gè)數(shù)精確到( )

A. 百萬(wàn)位B. 百分位C. 千萬(wàn)位D. 十分位

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各數(shù)中,比﹣2小的數(shù)是(
A.﹣3
B.﹣1
C.0
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解學(xué)生體育訓(xùn)練的情況,某市從全市九年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行了一次體育科目測(cè)試(把成績(jī)結(jié)果分為四個(gè)等級(jí):A級(jí):優(yōu)秀;B級(jí):良好;C級(jí):及格;D級(jí):不及格),并將測(cè)試結(jié)果繪成了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問(wèn)題:

(1)求本次抽樣測(cè)試的學(xué)生人數(shù);

(2)求扇形圖中∠α的度數(shù),并把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)該市九年級(jí)共有學(xué)生9000名,如果全部參加這次體育測(cè)試,則測(cè)試等級(jí)為D的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:x2(2x﹣1)=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)l1的解析式為y=﹣3x+3,且l1與x軸交于點(diǎn)D,直線(xiàn)l2經(jīng)過(guò)點(diǎn)A,B,直線(xiàn)l1 , l2交于點(diǎn)C.

(1)求直線(xiàn)l2的解析表達(dá)式;
(2)求△ADC的面積;
(3)若點(diǎn)P為第一象限上的一點(diǎn),且以A,C,D,P為頂點(diǎn)的四邊形為平行四邊形,試求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案