【題目】如圖,在半徑為中,點(diǎn)是劣弧的中點(diǎn),點(diǎn)是優(yōu)弧上一點(diǎn),,下列四個(gè)結(jié)論:①;②;③;④四邊形是菱形.其中正確結(jié)論的序號(hào)是(

A.①③B.②④C.②③④D.①③④

【答案】B

【解析】

根據(jù)圓周角定理得到∠BOD=60°,根據(jù)點(diǎn)D是劣弧AB的中點(diǎn),得到∠AOD=BOD=60°,求得∠AOB=120°,故①錯(cuò)誤;根據(jù)垂徑定理得到ODAB,解直角三角形得到AB=3,故②正確;根據(jù)等腰三角形的性質(zhì)得到∠OBA=30°,求得sinABO=,故③錯(cuò)誤;設(shè)ODAB交于E,根據(jù)直角三角形的性質(zhì)得到OE=OA=OD,求得四邊形ADBO是菱形,故④正確.

∵∠C=30°


∴∠BOD=60°,
∵點(diǎn)D是劣弧AB的中點(diǎn),
∴∠AOD=BOD=60°,
∴∠AOB=120°,故①錯(cuò)誤;
∵點(diǎn)D是劣弧AB的中點(diǎn),
ODAB,
OA=3,∠OAB=30°,
AB=3,故②正確;
OA=OB,∠AOB=120°,
∴∠OBA=30°,
sinABO=,故③錯(cuò)誤;
設(shè)ODAB交于E,
∵∠AEO=90°,∠OAB=30°,
OE=OA=OD,
AE=BE,ODAB
∴四邊形ADBO是菱形,故④正確,
故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=﹣在第二象限內(nèi)的圖象相交于點(diǎn)A,與x軸的負(fù)半軸交于點(diǎn)B,與y軸的負(fù)半軸交于點(diǎn)C

1)求∠BCO的度數(shù);

2)若y軸上一點(diǎn)M的縱坐標(biāo)是4,且AMBM,求點(diǎn)A的坐標(biāo);

3)在(2)的條件下,若點(diǎn)Py軸上,點(diǎn)Q是平面直角坐標(biāo)系中的一點(diǎn),當(dāng)以點(diǎn)A、MP、Q為頂點(diǎn)的四邊形是菱形時(shí),請(qǐng)直接寫出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yax2+bx+3a≠0)與x軸分別交于A(﹣3,0),B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)E(﹣14),對(duì)稱軸交x軸于點(diǎn)F

1)請(qǐng)直接寫出這條拋物線和直線AE、直線AC的解析式;

2)連接AC、AE、CE,判斷△ACE的形狀,并說(shuō)明理由;

3)如圖2,點(diǎn)D是拋物線上一動(dòng)點(diǎn),它的橫坐標(biāo)為m,且﹣3m<﹣1,過(guò)點(diǎn)DDKx軸于點(diǎn)K,DK分別交線段AEAC于點(diǎn)G、H.在點(diǎn)D的運(yùn)動(dòng)過(guò)程中,

DG、GHHK這三條線段能否相等?若相等,請(qǐng)求出點(diǎn)D的坐標(biāo);若不相等,請(qǐng)說(shuō)明理由;

②在①的條件下,判斷CGAE的數(shù)量關(guān)系,并直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CD是一高為4米的平臺(tái),AB是與CD底部相平的一棵樹,在平臺(tái)頂C點(diǎn)測(cè)得樹頂A點(diǎn)的仰角α=30°,從平臺(tái)底部向樹的方向水平前進(jìn)3米到達(dá)點(diǎn)E,在點(diǎn)E處測(cè)得樹頂A點(diǎn)的仰角β=60°,求樹高AB(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,大樓底右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測(cè)得障礙物邊緣點(diǎn)C的俯角為30°,測(cè)得大樓頂端A的仰角為45°(點(diǎn)B,C,E在同一水平直線上).已知AB=80mDE=20m,求障礙物B,C兩點(diǎn)間的距離.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】合肥百大集團(tuán)新進(jìn)了40臺(tái)空調(diào)機(jī),60臺(tái)電冰箱,計(jì)劃調(diào)配給下屬的甲、乙兩個(gè)連鎖店銷售,其中70臺(tái)給甲連鎖店,30臺(tái)給乙連鎖店.兩個(gè)連鎖店銷售這兩種電器每臺(tái)的利潤(rùn)(元)如下表:

空調(diào)機(jī)

電冰箱

甲連鎖店

200

170

乙連鎖店

160

150

設(shè)集團(tuán)調(diào)配給甲連鎖店x臺(tái)空調(diào)機(jī),集團(tuán)賣出這100臺(tái)電器的總利潤(rùn)為y(元).

(1)求y關(guān)于x的函數(shù)關(guān)系式,并求出x的取值范圍;

(2)為了促銷,集團(tuán)決定僅對(duì)甲連鎖店的空調(diào)機(jī)每臺(tái)讓利a元銷售,其他的銷售利潤(rùn)不變,并且讓利后每臺(tái)空調(diào)機(jī)的利潤(rùn)仍然高于甲連鎖店銷售的每臺(tái)電冰箱的利潤(rùn),問(wèn)該集團(tuán)應(yīng)該如何設(shè)計(jì)調(diào)配方案,才能使總利潤(rùn)達(dá)到最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中成反比例成正比例,函數(shù)的自變量的取值范圍是,且當(dāng)時(shí),的值均為。

請(qǐng)對(duì)該函數(shù)及其圖象進(jìn)行如下探究:

1)解析式探究:根據(jù)給定的條件,可以確定出該函數(shù)的解析式為:

2)函數(shù)圖象探宄:①根據(jù)解析式,選取適當(dāng)?shù)淖宰兞?/span>,并完成下表:

...

...

②根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出函數(shù)圖象.

3)結(jié)合畫出的函數(shù)圖象,解決問(wèn)題:

①當(dāng),時(shí),函數(shù)值分別為,則的大小關(guān)系為: (用表示)

②若直線與該函數(shù)圖象有兩個(gè)交點(diǎn),則的取值范圍是 ,此時(shí),的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校開展我最喜愛的一項(xiàng)體育活動(dòng)調(diào)查,要求每名學(xué)生必選且只能選一項(xiàng),現(xiàn)隨機(jī)抽查了m名學(xué)生,并將其結(jié)果繪制成不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

結(jié)合以上信息解答下列問(wèn)題:

1m   

2)請(qǐng)補(bǔ)全上面的條形統(tǒng)計(jì)圖;

3)在圖2中,乒乓球所對(duì)應(yīng)扇形的圓心角=   

4)已知該校共有2100名學(xué)生,請(qǐng)你估計(jì)該校約有多少名學(xué)生最喜愛足球活動(dòng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠AOB60°,半徑為2的⊙M與邊OA、OB相切,若將⊙M水平向左平移,當(dāng)⊙M與邊OA相交時(shí),設(shè)交點(diǎn)為EF,且EF6,則平移的距離為____

查看答案和解析>>

同步練習(xí)冊(cè)答案