【題目】(1)(問(wèn)題發(fā)現(xiàn))
如圖1,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,延長(zhǎng)CA到點(diǎn)F,使得AF=AC,連接DF、BE,則線段BE與DF的數(shù)量關(guān)系為 ,位置關(guān)系為 ;
(2)(拓展研究)
將△ADE繞點(diǎn)A旋轉(zhuǎn),(1)中的結(jié)論有無(wú)變化??jī)H就圖(2)的情形給出證明;
(3)(解決問(wèn)題)
當(dāng)AB=2,AD=,△ADE旋轉(zhuǎn)得到D,E,F三點(diǎn)共線時(shí),直接寫(xiě)出線段DF的長(zhǎng).
【答案】(1)DF=BE,DF⊥BE;(2)詳見(jiàn)解析;(3)DF=+1或﹣1
【解析】
(1)通過(guò)證明△ABE≌△AFD,可得DF=BE,DF⊥BE;
(2)通過(guò)證明△ADF≌△AEB,可得DF=BE,DF⊥BE;
(3)分點(diǎn)D在AB左側(cè)和右側(cè)兩種情況討論,由等腰直角三角形的性質(zhì)和勾股定理可求FH的長(zhǎng),即可求DF的長(zhǎng).
(1)延長(zhǎng)FD交BE于點(diǎn)M
∵△ABC和△ADE都是等腰直角三角形
∴AD=AE,AB=AC,∠BAC=90°=∠FAD
∵AF=AC
∴AF=AB,且AD=AE,∠BAE=∠DAF=90°
∴△ABE≌△AFD(SAS)
∴FD=BE,∠F=∠ABE,
∵∠ABE+∠AEB=90°
∴∠F+∠AEB=90°
∴∠FME=90°
∴FD⊥BE
故答案為:DF=BE,DF⊥BE
【拓展研究】
(2)
∵∠BAC=90°=∠EAD
∴∠DAF=∠EAB=90°+∠EAF
在△ADF 和△AEB 中
∴△ADF≌△AEB
DF=BE,∠F=∠EBA
設(shè) CF 和 BE 相交于點(diǎn) H,則∠EHF=∠CHB
∵∠BAC=∠DAE=90°
∴∠EBA+∠CHB=90°
∴∠F+∠EHF=90°
∴DF⊥BE
(3)當(dāng)點(diǎn)D在AB的左側(cè),
如圖,過(guò)點(diǎn)A作AH⊥EF于點(diǎn)H,
∵△ADE是等腰直角三角形,AD=AE=,AH⊥EF
∴DE=2,AH=DH=DE=1
∵FH==
∴FD=FH﹣DH=﹣1
當(dāng)點(diǎn)D在AB右側(cè),
如圖,過(guò)點(diǎn)A作AH⊥EF于點(diǎn)H,
同理可求:FH=
∴FD=FH+HD=+1
綜上所述:DF=+1或﹣1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形紙片ABCD沿對(duì)角線BD折疊,使點(diǎn)A落在平面上的F點(diǎn)處,DF交BC于點(diǎn)E.
(1)求證:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得到,A、B、E三點(diǎn)共線,AC交DE于F,BC交DE于G,下列結(jié)論不正確的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=,E為CD邊上一點(diǎn),將△BCE沿BE折疊,使得C落到矩形內(nèi)點(diǎn)F的位置,連接AF,若tan∠BAF=,則CE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以△ABC的邊AB為直徑的⊙O與邊AC相交于點(diǎn)D,BC是⊙O的切線,E為BC的中點(diǎn),連接AE、DE.
(1)求證:DE是⊙O的切線;
(2)設(shè)△CDE的面積為 S1,四邊形ABED的面積為 S2.若 S2=5S1,求tan∠BAC的值;
(3)在(2)的條件下,若AE=3,求⊙O的半徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處,折痕AO與邊BC交于點(diǎn)O,連結(jié)AP、OP.
(1)求證:△PDA∽△OCP;
(2)若tan∠PAO=,求CP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)閱讀下列材料:
問(wèn)題:已知方程,求一個(gè)一元二次方程,使它的根分別是已知方程根的倍
解:設(shè)所求方程的根為,則,所以.
把代入已知方程,得.
化簡(jiǎn),得
故所求方程為.
這種利用方程的代換求新方程的方法,我們稱(chēng)為“換根法”.
請(qǐng)用閱讀材料提供的“換根法”求新方程(要求:把所求方程化為一般形式).
(1)已知方程,求一個(gè)一元二次方程,使它的根分別是已知方程根的相反數(shù),則所求方程為:_______________.
(2)已知方程,求一個(gè)一元二次方程,使它的根分別是已知方程根的倒數(shù).
(3)已知關(guān)于的一元二次方程()的兩個(gè)實(shí)數(shù)根分別為,,求一元二次方程的兩根.(直接寫(xiě)出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,n個(gè)邊長(zhǎng)為1的相鄰正方形的一邊均在同一直線上,點(diǎn)M1,M2,M3,…Mn分別為邊B1B2,B2B3,B3B4,…,BnBn+1的中點(diǎn),△B1C1M1的面積為S1,△B2C2M2的面積為S2,…△BnCnMn的面積為Sn,則Sn= .(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知二次函數(shù)y=-x2+bx+c的圖像與x軸的交點(diǎn)為點(diǎn)A(3,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),連接AC.
(1)求這個(gè)二次函數(shù)的解析式;
(2)在(1)中位于第一象限內(nèi)的拋物線上是否存在點(diǎn)D,使得△ACD的面積最大?若存在,求出點(diǎn)D的坐標(biāo)及△ACD面積的最大值,若不存在,請(qǐng)說(shuō)明理由.
(3)在拋物線上是否存在點(diǎn)E,使得△ACE是以AC為直角邊的直角三角形如果存在,請(qǐng)直接寫(xiě)出點(diǎn)E的坐標(biāo)即可;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com