【題目】△ABC在平面直角坐標(biāo)系中,且A(-2,1)、B(-3,-2)、C(1,-4).將其平移后得到△A1B1C1,若A,B的對(duì)應(yīng)點(diǎn)是A1,B1,C的對(duì)應(yīng)點(diǎn)C1的坐標(biāo)是(3,-1).
(1)在平面直角坐標(biāo)系中畫出△ABC和△A1B1C1;
(2)寫出點(diǎn)A1的坐標(biāo)是_____________,B1坐標(biāo)是___________;
(3)此次平移可看作△ABC向________,平移了____________個(gè)單位長度,再向_______平移了______個(gè)單位長度得到△A1B1C1.
【答案】(1)畫圖見解析;(2)(0,4),(-1,1);(3)上;3;右;2
【解析】
(1)利用點(diǎn)A、B、C的坐標(biāo)描點(diǎn)得到△ABC,然后利用C點(diǎn)和C1點(diǎn)的關(guān)系確定平移的方向和距離,利用此平移規(guī)律寫出A1、B1的坐標(biāo),然后描點(diǎn)即可;
(2)由圖即可得出A1、B1的坐標(biāo);
(3)由(1)中的平移即可得出答案.
(1)△ABC和△A1B1C1如圖所示:
(2)由圖可知,點(diǎn)A1的坐標(biāo)是(0,4),B1坐標(biāo)是(-1,1);
(3)此次平移可看作△ABC向上平移了3個(gè)單位長度,再向右平移了2個(gè)單位長度得到△A1B1C1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax +bx+c經(jīng)過點(diǎn)(-1,0),對(duì)稱軸l如圖所示.則下列結(jié)論:①
abc >0;②a-b+c=0;③2a+c<0;④a+b<0,其中所有正確的結(jié)論是( )
A.①③
B.②③
C.②④
D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長線于點(diǎn)F,連接CF.
(1) 求證:AD=AF;
(2) 當(dāng)△ABC滿足什么條件時(shí),四邊形ADCF是矩形.并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形AB1C1D1的邊長為1,∠B1=60°;作AD2⊥B1C1于點(diǎn)D2 , 以AD2為一邊,做第二個(gè)菱形AB2C2D2 , 使∠B2=60°;作AD3⊥B2C2于點(diǎn)D3 , 以AD3為一邊做第三個(gè)菱形AB3C3D3 , 使∠B3=60°…依此類推,這樣做的第n個(gè)菱形ABnCnDn的邊ADn的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿射線BC以1cm/s的速度移動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為ts.
(1)求BC邊的長;
(2)當(dāng)△ABP為直角三角形時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與半徑為2的⊙O相切于點(diǎn)C,點(diǎn)D,E,F(xiàn)是⊙O上三個(gè)點(diǎn),EF∥AB,若EF=2 ,則∠EDC的度數(shù)為( )
A.60°
B.90°
C.30°
D.75°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系xOy中,一次函數(shù)y=﹣x+5的圖象l1分別與x,y軸交于A,B兩點(diǎn),正比例函數(shù)的圖象l2與l1交于點(diǎn)C(m,4).
(1)求m的值及l2的解析式;
(2)求S△AOC﹣S△BOC的值;
(3)一次函數(shù)y=kx+1的圖象為l3,且11,l2,l3不能圍成三角形,直接寫出k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+2x+3與x軸相交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C.
(1)直接寫出A,B,C三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;
(2)如圖2,連接BC,與拋物線的對(duì)稱軸交于點(diǎn)E,點(diǎn)P位線段BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PF∥DE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m;用含m的代數(shù)式表示線段PF的長;并求出當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形?
(3)如圖3,連接AC,在x軸上是否存在點(diǎn)Q,使△ACQ為等腰三角形,若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是小明家和學(xué)校所在地的簡單地圖,已知,,,點(diǎn)C為OP的中點(diǎn),回答下列問題:
(1)圖中到小明家距離相同的是哪些地方?
(2)由圖可知,公園在小明家東偏南30°方向2km處.請(qǐng)用方向與距離描述學(xué)校、商場、停車場相對(duì)于小明家的位置.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com