【題目】如圖,中,,現(xiàn)有兩點MN分別從點A、點B同時出發(fā),沿三角形的邊運動,已知點M的速度為每秒1個單位長度,點N的運度為每秒2個單位長度當(dāng)點M第一次到達B點時,M、N同時停止運動.
M、N運動幾秒后,M、N兩點重合?
M、N運動幾秒后,可得到等邊三角形
當(dāng)點M、NBC邊上運動時,能否得到以MN為底邊的等腰?如存在,請求出此時MN運動的時間.

【答案】(1)點M、N運動12秒后,MN兩點重合;(2)點MN運動4秒后,可得到等邊三角形;(3)當(dāng)點M、NBC邊上運動時,能得到以MN為底邊的等腰三角形,此時M、N運動的時間為16秒.

【解析】

1)根據(jù)路程差=12構(gòu)建方程即可解決問題;

(2)設(shè)點M、N運動t秒后,可得到等邊三角形AMN,如圖①中,根據(jù)AM=AN,構(gòu)建方程即可解決問題;

(3)當(dāng)點M、NBC邊上運動時,可以得到以MN為底邊的等腰三角形,由(1)知12秒時M、N兩點重合,恰好在C處,如圖②,假設(shè)AMN是等腰三角形,根據(jù)CN=BN,構(gòu)建方程即可解決問題.

設(shè)點MN運動x秒后,M、N兩點重合,

,

解得:;

M、N運動12秒后,M、N兩點重合.

設(shè)點MN運動t秒后,可得到等邊三角形,如圖

,,

三角形是等邊三角形,

,

解得,

MN運動4秒后,可得到等邊三角形

當(dāng)點MNBC邊上運動時,可以得到以MN為底邊的等腰三角形,

12秒時MN兩點重合,恰好在C處,

如圖,假設(shè)是等腰三角形,

,

,

,

是等邊三角形,

,

中,

,

,

設(shè)當(dāng)點MNBC邊上運動時,M、N運動的時間y秒時,是等腰三角形,

,,

解得:故假設(shè)成立.

當(dāng)點M、NBC邊上運動時,能得到以MN為底邊的等腰三角形,此時M、N運動的時間為16秒.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,⊙O(圓心O在△ABC內(nèi)部)經(jīng)過B、C兩點,交AB于點E,過點E作⊙O的切線交AC于點F.延長CO交AB于點G,作ED∥AC交CG于點D

(1)求證:四邊形CDEF是平行四邊形;
(2)若BC=3,tan∠DEF=2,求BG的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水果市場將120噸水果運往各地商家,現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下表所示:(假設(shè)每輛車均滿載)

車型

汽車運載量(噸/輛)

5

8

10

汽車運費(元/輛)

400

500

600

(1)若全部水果都用甲、乙兩種車型來運送,需運費8200元,問分別需甲、乙兩種車型各幾輛?

(2)為了節(jié)約運費,市場可以調(diào)用甲、乙、丙三種車型參與運送(每種車型至少1輛),已知它們的總輛數(shù)為16輛,你能通過列方程組的方法分別求出幾種車型的輛數(shù)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點E是CD的中點,點F是BC上一點,且FC=2BF,連接AE,EF.若AB=2,AD=3,則cos∠AEF的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點DE分別在邊BC,AC上,且DE∥AB,過點EEF⊥DE,交BC的延長線于點F.

1)求∠F的度數(shù);

2)若CD=2,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將含60°角的直角三角板ABC繞頂點A順時針旋轉(zhuǎn)45°度后得到△AB′C′,點B經(jīng)過的路徑為弧BB′,若∠BAC=60°,AC=1,則圖中陰影部分的面積是(
A.
B.
C.
D.π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級全體320名學(xué)生在電腦培訓(xùn)前后各參加了一次水平相同的考試,考分都以同一標準劃分成不合格、合格、優(yōu)秀三個等級.為了了解電腦培訓(xùn)的效果,用抽簽方式得到其中32名學(xué)生的兩次考試考分等級,所繪制的統(tǒng)計圖如圖所示.試結(jié)合圖示信息回答下列問題:

(1)這32名學(xué)生培訓(xùn)前考分的中位數(shù)所在的等級是 ,培訓(xùn)后考分的中位數(shù)所在的等級是

(2)這32名學(xué)生經(jīng)過培訓(xùn),考分等級不合格 的百分比由 下降到

(3)估計該校整個八年級中,培訓(xùn)后考分等級為合格優(yōu)秀的學(xué)生共有 名.

(4)你認為上述估計合理嗎:理由是什么?

答: ,理由:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【探索新知】:如圖1,射線OC在∠AOB的內(nèi)部,圖中共有3個角:∠AOBAOC和∠BOC,若其中有一個角的度數(shù)是另一個角度數(shù)的兩倍,則稱射線OC是∠AOB巧分線

1)一個角的平分線   這個角的巧分線;(填不是

2)如圖2,若∠MPN=α,且射線PQ是∠MPN巧分線,則∠MPQ=   ;(用含α的代數(shù)式表示出所有可能的結(jié)果)

【深入研究】:如圖2,若∠MPN=60°,且射線PQ繞點PPN位置開始,以每秒10°的速度逆時針旋轉(zhuǎn),當(dāng)PQPN180°時停止旋轉(zhuǎn),旋轉(zhuǎn)的時間為t秒.

3)當(dāng)t為何值時,射線PM是∠QPN巧分線;

4)若射線PM同時繞點P以每秒的速度逆時針旋轉(zhuǎn),并與PQ同時停止,請直接寫出當(dāng)射線PQ是∠MPN巧分線t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】養(yǎng)成良好的早鍛煉習(xí)慣,對學(xué)生的學(xué)習(xí)和生活非常有益某中學(xué)為了了解七年級學(xué)生的早鍛煉情況,校政教處在七年級隨機抽取了部分學(xué)生,并對這些學(xué)生通常情況下一天的早鍛煉時間分鐘進行了調(diào)查現(xiàn)把調(diào)查結(jié)果分為AB,C,D四組,如下表所示;同時,將調(diào)查結(jié)果繪制成下面兩幅不完整的統(tǒng)計圖.

組別

早鍛煉時間

A

B

C

D

請根據(jù)以上提供的信息,解答下列問題:

扇形統(tǒng)計圖中D所在扇形的圓心角度數(shù)為______;

補全頻數(shù)分布直方圖;

已知該校七年級共有1200名學(xué)生,請你估計這個年級學(xué)生中有多少人一天早鍛煉的時間不少于20分鐘.

查看答案和解析>>

同步練習(xí)冊答案