【題目】如圖,在矩形ABCD中,點(diǎn)E是CD的中點(diǎn),點(diǎn)F是BC上一點(diǎn),且FC=2BF,連接AE,EF.若AB=2,AD=3,則cos∠AEF的值是

【答案】
【解析】解:連接AF,如圖所示:
∵四邊形ABCD是矩形,
∴∠B=∠C=90°,CD=AB=2,BC=AD=3,
∵FC=2BF,
∴BF=1,F(xiàn)C=2,
∴AB=FC,
∵E是CD的中點(diǎn),
∴CE= CD=1,
∴BF=CE,
在△ABF和△FCE中, ,
∴△ABF≌△FCE(SAS),
∴∠BAF=∠CFE,AF=FE,
∵∠BAF+∠AFB=90°,
∴∠CFE+∠AFB=90°,
∴∠AFE=180°﹣90°=90°,
∴△AEF是等腰直角三角形,
∴∠AEF=45°,
∴ocs∠AEF= ;
所以答案是:
【考點(diǎn)精析】掌握矩形的性質(zhì)和解直角三角形是解答本題的根本,需要知道矩形的四個(gè)角都是直角,矩形的對(duì)角線相等;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.

(1)求證:△ABC≌△AED;
(2)當(dāng)∠B=140°時(shí),求∠BAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,B=D=90°,A=60°,AB=4,CD=2.求:四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD=CD,ABD=ACD=90°,點(diǎn)E、F分別在AB、AC上,若ED平分∠BEF

1)求證:FD平分∠EFC

2)若EF=4,AF=6,AE=5,求BECF的和的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩組鄰邊分別相等的四邊形叫做“箏形”,如圖,四邊形ABCD是一個(gè)箏形,其中,詹姆斯在探究箏形的性質(zhì)時(shí),得到如下結(jié)論:
;;;四邊形ABCD的面積其中正確的結(jié)論有  

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,甲、乙兩船同時(shí)由港口A出發(fā)開往海島B,甲船沿東北方向向海島B航行,其速度為15海里/小時(shí);乙船速度為20海里/小時(shí),先沿正東方向航行1小時(shí)后,到達(dá)C港口接旅客,停留半小時(shí)后再轉(zhuǎn)向北偏東30°方向開往B島,其速度仍為20海里/小時(shí).

(1)求港口A到海島B的距離;

(2)B島建有一座燈塔,在燈塔方圓5海里內(nèi)都可以看見燈塔,問(wèn)甲、乙兩船哪一艘先看到燈塔?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,現(xiàn)有兩點(diǎn)M、N分別從點(diǎn)A、點(diǎn)B同時(shí)出發(fā),沿三角形的邊運(yùn)動(dòng),已知點(diǎn)M的速度為每秒1個(gè)單位長(zhǎng)度,點(diǎn)N的運(yùn)度為每秒2個(gè)單位長(zhǎng)度當(dāng)點(diǎn)M第一次到達(dá)B點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng).
點(diǎn)M、N運(yùn)動(dòng)幾秒后,M、N兩點(diǎn)重合?
點(diǎn)M、N運(yùn)動(dòng)幾秒后,可得到等邊三角形?
當(dāng)點(diǎn)M、NBC邊上運(yùn)動(dòng)時(shí),能否得到以MN為底邊的等腰?如存在,請(qǐng)求出此時(shí)MN運(yùn)動(dòng)的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】”切實(shí)減輕學(xué)生課業(yè)負(fù)擔(dān)”是我市作業(yè)改革的一項(xiàng)重要舉措.某中學(xué)為了解本校學(xué)生平均每天的課外作業(yè)時(shí)間,隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,并將調(diào)查結(jié)果分為A、B、C、D四個(gè)等級(jí),A:1小時(shí)以內(nèi);B:1小時(shí)﹣﹣1.5小時(shí);C:1.5小時(shí)﹣﹣2小時(shí);D:2小時(shí)以上.根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩種不完整的統(tǒng)計(jì)圖,
請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)該校共調(diào)查了學(xué)生;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)表示等級(jí)A的扇形圓心角α的度數(shù)是;
(4)在此次調(diào)查問(wèn)卷中,甲、乙兩班各有2人平均每天課外作業(yè)量都是2小時(shí)以上,從這4人中人選2人去參加座談,用列表表或畫樹狀圖的方法求選出的2人來(lái)自不同班級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過(guò)原點(diǎn)O和x軸上另一點(diǎn)A,它的對(duì)稱軸x=2與x軸交于點(diǎn)C,直線y=﹣2x﹣1經(jīng)過(guò)拋物線上一點(diǎn)B(﹣2,m),且與y軸、直線x=2分別交于點(diǎn)D、E.

(1)求m的值及該拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)判斷直線BE與拋物線交點(diǎn)的個(gè)數(shù);
(3)求證:CD垂直平分BE;
(4)若P是該拋物線上的一個(gè)動(dòng)點(diǎn),是否存在這樣的點(diǎn)P,使得△PBE是等腰直角三角形,且∠PEB=90°?若存在,試求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案