【題目】如圖1,已知拋物線頂點(diǎn)C14),且與y軸交于點(diǎn)D0,3).

1)求該拋物線的解析式及其與x軸的交點(diǎn)AB的坐標(biāo);

2)將直線AC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°后得到直線AE,與拋物線的另一個(gè)交點(diǎn)為E,請求出點(diǎn)E的坐標(biāo);

3)如圖2,點(diǎn)P是該拋物線上位于第一象限的點(diǎn),線段APBD于點(diǎn)M、交y軸于點(diǎn)N,△BMP和△DMN的面積分別為S1S2,求S1S2的最大值.

【答案】1)點(diǎn)A、B的坐標(biāo)分別為(﹣10)、(3,0);(2)點(diǎn)E,);(3S1S2的最大值為

【解析】

1)設(shè)拋物線的表達(dá)式為:y=ax-h2+k=ax-12+4,將點(diǎn)D的坐標(biāo)代入上式,即可求解;
2)構(gòu)建△ACH,用解直角三角形的方法求出點(diǎn)H的坐標(biāo),進(jìn)而求解;
3)設(shè)S=SABM,則S1-S2=S1+S-S+S2=SABP-SBDO,即可求解.

解:(1)設(shè)拋物線的表達(dá)式為:yaxh2+kax12+4,

將點(diǎn)D的坐標(biāo)代入上式并解得:a=﹣1,

故拋物線的表達(dá)式為:y=﹣(x12+4=﹣x2+2x+3

y0,則x=﹣13

故點(diǎn)A、B的坐標(biāo)分別為:(﹣1,0)、(30);

2)如圖,設(shè)函數(shù)的對稱軸交x軸于點(diǎn)G,交AE于點(diǎn)H,過點(diǎn)HHNAC于點(diǎn)N,

在△AGC中,tanACGtanHCN,

RtCHN中,設(shè)HNx,則CNHNtanHCN2x,

RtANH中,∠NAH45°,則ANNHx

ACAN+CN3x,

x,

RtCHN中,CH,

故點(diǎn)H1,),

由點(diǎn)A、H的坐標(biāo)得,直線AH的表達(dá)式為:yx+

聯(lián)立①②并解得:x或﹣1(舍去﹣1),

故點(diǎn)E);

3)設(shè)點(diǎn)P的坐標(biāo)為(x,y),y=﹣x2+2x+3

設(shè)SSABM,

S1S2=(S1+S)﹣(S+S2)=SABPSBDO

×AB×y×OB×OD

×4×y×3×3

=﹣2x2+4x+,

∵﹣20,故S1S2有最大值,

當(dāng)x1時(shí),其最大值為

S1S2的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,的直徑,弦G,過C點(diǎn)的切線與射線相交于點(diǎn)E,直線交于點(diǎn)H,.

(Ⅰ)求的半徑;

(Ⅱ)將射線D點(diǎn)逆時(shí)針旋轉(zhuǎn),得射線(如圖2),交于點(diǎn)M,與及切線分別相交于點(diǎn)N,F,當(dāng)時(shí),求切線的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校招聘數(shù)學(xué)教師,本次招聘進(jìn)行專業(yè)技能測試和課堂教學(xué)展示兩個(gè)項(xiàng)目的考核,這兩項(xiàng)考核的滿分均為100分,學(xué)校將這兩個(gè)項(xiàng)目的得分按一定的比例計(jì)算出總成績.經(jīng)統(tǒng)計(jì),參加考核的4名考生的兩個(gè)項(xiàng)目的得分如下:

1)經(jīng)過計(jì)算,1號(hào)考生的總成績?yōu)?/span>78分,求專業(yè)技能測試得分和課堂教學(xué)展示得分分別占總成績的百分比;

2)若學(xué)校錄取總成績最高的考生,通過計(jì)算說明,4名考生中哪一名考生會(huì)被錄?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某蔬菜批發(fā)公司用實(shí)際行動(dòng)支持抗擊新冠肺炎疫情,為確保市民在疫情期間的蔬菜供應(yīng),以平均每噸萬元的價(jià)格購進(jìn)一批蔬菜,已知這批蔬菜通過網(wǎng)絡(luò)在市場上的日銷售量()與銷售價(jià)格(萬元/)之間的函數(shù)關(guān)系如下圖所示.

1)求日銷售量與銷售價(jià)格之間的函數(shù)關(guān)系式; (不要求寫的取值范圍)

2)如果要確保日銷售量不小于噸,求最大毛利潤.(假設(shè):毛利潤=銷售額-購進(jìn)成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五張正面分別寫有數(shù)字:﹣3,﹣20,1,2的卡片,它們的背面完全相同,現(xiàn)將這五張卡片背面朝上洗勻.

1)從中任意抽取一張卡片,則所抽卡片上數(shù)字的絕對值不小于1的概率是  ;

2)先從中任意抽取一張卡片,以其正面數(shù)字作為m的值,然后再從剩余的卡片中隨機(jī)抽一張,以其正面的數(shù)字作為n的值,請用列表法或畫樹狀圖法,求點(diǎn)Qmn)在第四象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)國家提出的每天鍛煉1小時(shí)的號(hào)召,某校積極開展了形式多樣的陽光體育運(yùn)動(dòng),毛毛對該班同學(xué)參加鍛煉的情況進(jìn)行了統(tǒng)計(jì)(每人只能選其中一項(xiàng)),并繪制了如圖兩個(gè)統(tǒng)計(jì)圖,請根據(jù)圖中提供的信息解答下列問題:

1)毛毛這次一共調(diào)查了多少名學(xué)生?

2)補(bǔ)全條形統(tǒng)計(jì)圖,并求出扇形統(tǒng)計(jì)圖中足球所在扇形的圓心角度數(shù);

3)若該校有1800名學(xué)生,請估計(jì)該校喜歡乒乓球的學(xué)生約有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,∠ACB 為鈍角,邊 AC 繞點(diǎn) A 沿逆時(shí)針方向旋轉(zhuǎn) 90°得到AD,邊 BC 繞點(diǎn) B 沿順時(shí)針方向旋轉(zhuǎn) 90°得到 BE,作 DMAB 于點(diǎn) M,ENAB 點(diǎn) N, AB10EN4, DM__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的頂點(diǎn)為A、C在雙曲線y1=上,B、D在雙曲線上,k1=2k2k10),ABy軸,=24,則k2的值為(

A.4B.4C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)ykx+bk≠0)與反比例函數(shù)ym≠0)的圖象相交于A(24),B(n,﹣2)兩點(diǎn).

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

2)點(diǎn)C是第一象限內(nèi)反比例函數(shù)圖象上的一點(diǎn),且點(diǎn)CA的右側(cè),過點(diǎn)CCD平行于y軸交直線AB于點(diǎn)D,若以C為圓心,CD長為半徑的⊙C恰好與y軸相切,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案