【題目】如圖,在△ABC 中,∠ACB 為鈍角,邊 AC 繞點(diǎn) A 沿逆時針方向旋轉(zhuǎn) 90°得到AD,邊 BC 繞點(diǎn) B 沿順時針方向旋轉(zhuǎn) 90°得到 BE,作 DM⊥AB 于點(diǎn) M,EN⊥AB于 點(diǎn) N, 若 AB=10,EN=4, 則 DM=__________.
【答案】6
【解析】
過點(diǎn)C作CF⊥AB于點(diǎn)F,由旋轉(zhuǎn)的性質(zhì)可得AD=AC,BE=BC,利用“一線三等角”證得∠D=∠CAF,從而可判定△DAM≌△ACF(AAS),則DM=AF.同理可證,△BFC≌△ENB(AAS),則BF=EN=4,再由AB=10,可得AF,即DM的值.
過點(diǎn)C作CF⊥AB于點(diǎn)F,如圖所示:
則旋轉(zhuǎn)的性質(zhì)得:
∴AD=AC,BE=BC,
∵DM⊥AB于點(diǎn)M,EN⊥AB于點(diǎn)N,CF⊥AB于點(diǎn)F,
∴∠AMD=∠AFC=∠BFC=∠BNE=90°,
∴∠D+∠DAM=90°,
∵∠CAD=90°,
∴∠CAF+∠DAM=90°,
∴∠D=∠CAF,
∴在△DAM和△ACF中,
,
∴△DAM≌△ACF(AAS),
∴DM=AF,
同理可證,△BFC≌△ENB(AAS),
∴BF=EN=4,
∵AB=10,
∴AF=6,
∴DM=6.
故答案為:6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對稱軸為直線x=1.下列結(jié)論:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正確結(jié)論的選項是( 。
A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.點(diǎn)B的坐標(biāo)為,將直線沿y軸向上平移3個單位長度后,恰好經(jīng)過B、C兩點(diǎn).
(1)求k的值和點(diǎn)C的坐標(biāo);
(2)求拋物線的表達(dá)式及頂點(diǎn)D的坐標(biāo);
(3)已知點(diǎn)E是點(diǎn)D關(guān)于原點(diǎn)的對稱點(diǎn),若拋物線與線段恰有一個公共點(diǎn),結(jié)合函數(shù)的圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線頂點(diǎn)C(1,4),且與y軸交于點(diǎn)D(0,3).
(1)求該拋物線的解析式及其與x軸的交點(diǎn)A、B的坐標(biāo);
(2)將直線AC繞點(diǎn)A順時針旋轉(zhuǎn)45°后得到直線AE,與拋物線的另一個交點(diǎn)為E,請求出點(diǎn)E的坐標(biāo);
(3)如圖2,點(diǎn)P是該拋物線上位于第一象限的點(diǎn),線段AP交BD于點(diǎn)M、交y軸于點(diǎn)N,△BMP和△DMN的面積分別為S1,S2,求S1﹣S2的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑, BC交⊙O于點(diǎn)D,E是的中點(diǎn),連接AE交BC于點(diǎn)F,∠ACB =2∠EAB.
(1)求證:AC是⊙O的切線;
(2)若,,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有一組鄰邊均和一條對角線相等的四邊形叫做鄰和四邊形.
(1)如圖1,四邊形ABCD中,∠ABC=70°,∠BAC=40°,∠ACD=∠ADC=80°,求證:四邊形ABCD是鄰和四邊形.
(2)如圖2,是由50個小正三角形組成的網(wǎng)格,每個小正三角形的頂點(diǎn)稱為格點(diǎn),已知A,B,C三點(diǎn)的位置如圖,請在網(wǎng)格圖中標(biāo)出所有的格點(diǎn)D,使得以A,B,C,D為頂點(diǎn)的四邊形為鄰和四邊形.
(3)如圖3,△ABC中,∠ABC=90°,AB=4,BC=4,若存在一點(diǎn)D,使四邊形ABCD是鄰和四邊形,求鄰和四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),點(diǎn)從點(diǎn)出發(fā),沿以1個單位每秒的速度勻速運(yùn)動,同時點(diǎn)從點(diǎn)出發(fā),沿軸正方向以2個單位每秒的速度勻速運(yùn)動.,交于點(diǎn),交軸于點(diǎn).當(dāng)點(diǎn)到達(dá)點(diǎn)時,兩點(diǎn)同時停止運(yùn)動,設(shè)運(yùn)動的時間為秒.在整個運(yùn)動過程中,設(shè)與的重疊部分的面積為.
(1)求當(dāng)為何值時,點(diǎn)與點(diǎn)、在同一直線上;
(2)求關(guān)于的函數(shù)關(guān)系式;
(3)在圖(3)中畫出關(guān)于的函數(shù)圖象,直接寫出的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,BE平分∠DBC交CD于點(diǎn)E,將△BCE繞點(diǎn)C順時針旋轉(zhuǎn)90°得到△DCF,延長BE交DF于G,則BF的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com