【題目】問題探究:
如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE.
(1)證明:AD=BE;
(2)求∠AEB的度數(shù).
問題變式:
(3)如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE.(Ⅰ)請求出∠AEB的度數(shù);(Ⅱ)判斷線段CM、AE、BE之間的數(shù)量關(guān)系,并說明理由.
【答案】(1)見詳解;(2)60°;(3)(Ⅰ)90°;(Ⅱ)AE=BE+2CM,理由見詳解.
【解析】
(1)由條件△ACB和△DCE均為等邊三角形,易證△ACD≌△BCE,從而得到對應(yīng)邊相等,即AD=BE;
(2)根據(jù)△ACD≌△BCE,可得∠ADC=∠BEC,由點(diǎn)A,D,E在同一直線上,可求出∠ADC=120°,從而可以求出∠AEB的度數(shù);
(3)(Ⅰ)首先根據(jù)△ACB和△DCE均為等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,據(jù)此判斷出∠ACD=∠BCE;然后根據(jù)全等三角形的判定方法,判斷出△ACD≌△BCE,即可判斷出BE=AD,∠BEC=∠ADC,進(jìn)而判斷出∠AEB的度數(shù)為90°;(Ⅱ)根據(jù)DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,據(jù)此判斷出AE=BE+2CM.
解:(1)如圖1,
∵△ACB和△DCE均為等邊三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°,
∴∠ACD=∠BCE.
在△ACD和△BCE中,
∴△ACD≌△BCE(SAS),
∴AD=BE;
(2)如圖1,∵△ACD≌△BCE,
∴∠ADC=∠BEC,
∵△DCE為等邊三角形,
∴∠CDE=∠CED=60°,
∵點(diǎn)A,D,E在同一直線上,
∴∠ADC=120°,
∴∠BEC=120°,
∴∠AEB=∠BEC-∠CED=60°;
(3)(Ⅰ)如圖2,
∵△ACB和△DCE均為等腰直角三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=90°,∠CDE=∠CED=45°,
∴∠ACB-∠DCB=∠DCE-∠DCB,
即∠ACD=∠BCE,
在△ACD和△BCE中,,
∴△ACD≌△BCE(SAS),
∴BE=AD,∠BEC=∠ADC,
∵點(diǎn)A,D,E在同一直線上,
∴∠ADC=180-45=135°,
∴∠BEC=135°,
∴∠AEB=∠BEC-∠CED=135°-45°=90°,
故答案為:90°;
(Ⅱ)如圖2,∵∠DCE=90°,CD=CE,CM⊥DE,
∴CM=DM=EM,
∴DE=DM+EM=2CM,
∵△ACD≌△BCE(已證),
∴BE=AD,
∴AE=AD+DE=BE+2CM,
故答案為:AE=BE+2CM.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過一年多的精準(zhǔn)幫扶,小明家的網(wǎng)絡(luò)商店(簡稱網(wǎng)店)將紅棗、小米等優(yōu)質(zhì)土特產(chǎn)迅速銷往全國,小明家網(wǎng)店中紅棗和小米這兩種商品的相關(guān)信息如下表:
商品 | 紅棗 | 小米 |
規(guī)格 | 1kg/袋 | 2kg/袋 |
成本(元/袋) | 40 | 38 |
售價(jià)(元/袋) | 60 | 54 |
根據(jù)上表提供的信息,解答下列問題:
(1)已知今年前五個(gè)月,小明家網(wǎng)店銷售上表中規(guī)格的紅棗和小米共3000kg,獲得利潤4.2萬元,求這前五個(gè)月小明家網(wǎng)店銷售這種規(guī)格的紅棗多少袋;
(2)根據(jù)之前的銷售情況,估計(jì)今年6月到10月這后五個(gè)月,小明家網(wǎng)店還能銷售上表中規(guī)格的紅棗和小米共2000kg,其中,這種規(guī)格的紅棗的銷售量不低于600kg.假設(shè)這后五個(gè)月,銷售這種規(guī)格的紅棗味x(kg),銷售這種規(guī)格的紅棗和小米獲得的總利潤為y(元),求出y與x之間的函數(shù)關(guān)系式,并求出這后五個(gè)月,小明家網(wǎng)店銷售這種規(guī)格的紅棗和小米至少獲得總利潤多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,現(xiàn)將一直角三角形放入圖中,其中,交于點(diǎn),交于點(diǎn).
(1)當(dāng)所放位置如圖一所示時(shí),則與的數(shù)量關(guān)系為 ;
(2)當(dāng)所放位置如圖二所示時(shí),試說明:;
(3)在(2)的條件下,若與交于點(diǎn),且,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點(diǎn)A(0,a),點(diǎn)B(b,0),其中a,b滿足=0,點(diǎn)C(m,n)在第一象限,已知是2的立方根.
(1)直接寫出A,B,C三點(diǎn)的坐標(biāo);
(2)求出△ABC的面積;
(3)如圖2,延長BC交y軸于D點(diǎn),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義一種對正整數(shù)n的“F”運(yùn)算:①當(dāng)n為奇數(shù)時(shí),結(jié)果為F(n)=3n+1;②當(dāng)n為偶數(shù)時(shí),結(jié)果為F(n)=(其中k是使F(n)為奇數(shù)的正整數(shù))……,兩種運(yùn)算交替重復(fù)進(jìn)行.例如,取n=13,則:
若n=24,則第100次“F”運(yùn)算的結(jié)果是_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展“陽光體育一小時(shí)”活動(dòng),按學(xué)校實(shí)際情況,決定開設(shè)A:踢毽子;B:籃球;C:跳繩;D:乒乓球四種運(yùn)動(dòng)項(xiàng)目.為了解學(xué)生最喜歡哪一種運(yùn)動(dòng)項(xiàng)目,隨機(jī)抽取了一部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下兩個(gè)統(tǒng)計(jì)圖.請結(jié)合圖中的信息解答下列問題:
(1)本次共調(diào)查了________名學(xué)生;
(2)在扇形統(tǒng)計(jì)圖中,“B”所在扇形的圓心角是________度;
(3)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)若該中學(xué)有1200名學(xué)生,喜歡籃球運(yùn)動(dòng)的學(xué)生約有________名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為提高學(xué)生的身體素質(zhì),經(jīng)常在課間開展學(xué)生跳繩比賽,下表為該校七年級(jí)班名學(xué)生參加某次跳繩比賽的情況,規(guī)定標(biāo)準(zhǔn)數(shù)量為每人每分鐘個(gè).
(1)求七年級(jí)班人中跳繩最多的同學(xué)一分鐘跳的次數(shù)是多少個(gè),跳繩最少的同學(xué)一分鐘跳的次數(shù)是多少個(gè)?
(2)跳繩比賽的計(jì)分方式如下:
①若每分鐘跳繩個(gè)數(shù)是規(guī)定標(biāo)準(zhǔn)數(shù)量,不計(jì)分;
②若每分鐘跳繩個(gè)數(shù)超過規(guī)定標(biāo)準(zhǔn)數(shù)量,每多跳個(gè)繩加分
③若每分鐘跳繩個(gè)數(shù)沒有達(dá)到規(guī)定標(biāo)準(zhǔn)數(shù)量,每少跳個(gè)繩扣分
如果班級(jí)跳繩總積分超過分,便可得到學(xué)校的獎(jiǎng)勵(lì),請你通過計(jì)算說明七年級(jí)班能否得到學(xué)校獎(jiǎng)勵(lì)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,3×3的方格分為上中下三層,第一層有一枚黑色方塊甲,可在方格A、B、C中移動(dòng),第二層有兩枚固定不動(dòng)的黑色方塊,第三層有一枚黑色方塊乙,可在方格D、E、F中移動(dòng),甲、乙移入方格后,四枚黑色方塊構(gòu)成各種拼圖.
(1)若乙固定在E處,移動(dòng)甲后黑色方塊構(gòu)成的拼圖是軸對稱圖形的概率是________.
(2)若甲、乙均可在本層移動(dòng).
①用樹形圖或列表法求出黑色方塊所構(gòu)拼圖是軸對稱圖形的概率.
②黑色方塊所構(gòu)拼圖是中心對稱圖形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在第1個(gè)△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一點(diǎn)C,延長AA1到A2,使得在第2個(gè)△A1CA2中,∠A1CA2=∠A1 A2C;在A2C上取一點(diǎn)D,延長A1A2到A3,使得在第3個(gè)△A2DA3中,∠A2DA3=∠A2 A3D;…,按此做法進(jìn)行下去,第3個(gè)三角形中以A3為頂點(diǎn)的內(nèi)角的度數(shù)為 ;第n個(gè)三角形中以An為頂點(diǎn)的內(nèi)角的度數(shù)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com