【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交AB于點D,交BC于點E.
(1)求證:BE=CE;
(2)若BD=2,BE=3,求AC的長.
【答案】
(1)證明:連結AE,如圖,
∵AC為⊙O的直徑,
∴∠AEC=90°,
∴AE⊥BC,
而AB=AC,
∴BE=CE
(2)連結DE,如圖,
∵BE=CE=3,
∴BC=6,
∵∠BED=∠BAC,
而∠DBE=∠CBA,
∴△BED∽△BAC,
∴ = ,即 = ,
∴BA=9,
∴AC=BA=9.
【解析】(1)連結AE,如圖,根據(jù)圓周角定理,由AC為⊙O的直徑得到∠AEC=90°,然后利用等腰三角形的性質即可得到BE=CE;(2)連結DE,如圖,證明△BED∽△BAC,然后利用相似比可計算出AB的長,從而得到AC的長.
【考點精析】利用等腰三角形的性質和圓周角定理對題目進行判斷即可得到答案,需要熟知等腰三角形的兩個底角相等(簡稱:等邊對等角);頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,圓D與y軸相切于點C(0,4),與x軸相交于A、B兩點,且AB=6.
(1)D點的坐標是 , 圓的半徑為;
(2)求經(jīng)過C、A、B三點的拋物線所對應的函數(shù)關系式;
(3)設拋物線的頂點為F,試證明直線AF與圓D相切;
(4)在x軸下方的拋物線上,是否存在一點N,使△CBN面積最大,最大面積是多少?并求出N點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀下面文字,然后按要求解題.
例:1+2+3+…+100=?如果一個一個順次相加顯然太繁,我們仔細分析這100個連續(xù)自然數(shù)的規(guī)律和特點,可以發(fā)現(xiàn)運用加法的運算律,是可以大大簡化計算,提高計算速度的.
因為1+100=2+99=3+98=…=50+51=101,所以將所給算式中各加數(shù)經(jīng)過交換、結合以后,可以很快求出結果.
解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)==5050.
(1)補全例題解題過程;
(2)計算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】嘉淇準備完成題目:化簡:,發(fā)現(xiàn)系數(shù)“”印刷不清楚.
(1)他把“”猜成3,請你化簡:(3x2+6x+8)–(6x+5x2+2);
(2)他媽媽說:“你猜錯了,我看到該題標準答案的結果是常數(shù).”通過計算說明原題中“”是幾?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點G.點F是CD上一點,且滿足 = ,連接AF并延長交⊙0于點E.連接AD,DE,若CF=2,AF=3.給出下列結論:
①△ADF∽△AED;②FG=2;③tan∠E= ;④S△DEF=4 .
其中正確的是( )
A.①②④
B.①②③
C.②③④
D.①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD是BC邊上的中線,AE∥BC,CE⊥AE,垂足為E.
(1)求證:△ABD≌△CAE;
(2)連接DE,線段DE與AB之間有怎樣的位置和數(shù)量關系?請證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com