【題目】如圖1,在平面直角坐標(biāo)系中,圓D與y軸相切于點(diǎn)C(0,4),與x軸相交于A、B兩點(diǎn),且AB=6.
(1)D點(diǎn)的坐標(biāo)是 , 圓的半徑為;
(2)求經(jīng)過(guò)C、A、B三點(diǎn)的拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(3)設(shè)拋物線的頂點(diǎn)為F,試證明直線AF與圓D相切;
(4)在x軸下方的拋物線上,是否存在一點(diǎn)N,使△CBN面積最大,最大面積是多少?并求出N點(diǎn)坐標(biāo).
【答案】
(1)(5,4);5
(2)
解:如圖1所示:
∵D(5,4),
∴E(5,0).
∴A(2,0)、B(8,0).
設(shè)拋物線的解析式為y=a(x﹣2)(x﹣8),將點(diǎn)C的坐標(biāo)代入得:16a=4,解得:a= ,
∴拋物線的解析式為y= x2﹣ x+4.
(3)
解:∵y= x2﹣ x+4,
∴拋物線的頂點(diǎn)坐標(biāo)F(5,﹣ ).
∴DF=4+ = ,AF= = .
又∵AD=5.
∴AD2+AF2=DF2,
∴△DAF為直角三角形.
∴∠DAF=90°.
∴AF是⊙D的切線.
(4)
解:如圖2所示:過(guò)點(diǎn)N作NP∥y軸,交BC與點(diǎn)P.
設(shè)BC的解析式為y=kx+4,將點(diǎn)B的坐標(biāo)代入得:8k+4=0,解得k=﹣ .
∴BC的解析式為y=﹣ x+4.
設(shè)N點(diǎn)坐標(biāo)(a, a2﹣ a+4),則點(diǎn)P坐標(biāo)為(a,﹣ a+4).
∴NP=﹣ a+4﹣( a2﹣ a+4)=﹣ a2+2a.
∴S△ABC=S△CPN+S△PBN= ×BO×PN= ×8×(﹣ a2+2a)=﹣(a﹣4)2+16.
∴當(dāng)a=4時(shí),S△ABC最大,最大值為16,此時(shí),N(4,﹣2).
【解析】解:(1)連接CD,過(guò)點(diǎn)D作DE⊥AB,垂足為E,連接AD.
∵DE⊥AB,
∴AE= AB=3.
∵⊙D與y軸相切,
∴DC⊥y軸.
∵∠COE=∠OED=∠OCD=90°,
∴四邊形OCDE為矩形.
∴OC=DE.
∵C(0,4),
∴DE=4.
在Rt△AED中,AD= =5.
∴⊙D的半徑為5.
∴D(5,4).
所以答案是:(5,4),5.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的圖象的相關(guān)知識(shí),掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn),以及對(duì)二次函數(shù)的性質(zhì)的理解,了解增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是小明用七巧板拼出的圖案.
(1)請(qǐng)賦予該圖形一個(gè)積極的含義;
(2)請(qǐng)你找出圖中2組平行線段和2對(duì)互相垂直的線段,用符號(hào)表示它們;
(3)找出圖中一個(gè)銳角、一個(gè)鈍角和一個(gè)直角,將它們表示出來(lái),并指出它們的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,六邊形ABCDEF的內(nèi)角都相等,∠DAB=60°,AB=DE,則下列結(jié)論成立的個(gè)數(shù)是( )
①AB∥DE;②EF∥AD∥BC;③AF=CD;④四邊形ACDF是平行四邊形;⑤六邊形ABCDEF既是中心對(duì)稱圖形,又是軸對(duì)稱圖形.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解中學(xué)生獲取信息的主要渠道,設(shè)置“A:報(bào)紙,B:電視,C:網(wǎng)絡(luò),D:身邊的人,E:其他”五個(gè)選項(xiàng)(五項(xiàng)中必選且只能選一項(xiàng))的調(diào)查問卷,先隨機(jī)抽取50名中學(xué)生進(jìn)行該問卷調(diào)查,根據(jù)調(diào)查的結(jié)果繪制條形圖如圖,該調(diào)查的方式和圖中a的值分別是( )
A. 抽樣調(diào)查,24 B. 普查,24 C. 抽樣調(diào)查,26 D. 普查,26
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】課間,小明拿著老師的等腰三角板玩,不小心掉到兩墻之間,如圖.
(1)求證:△ADC≌△CEB;
(2)從三角板的刻度可知AC=25cm,請(qǐng)你幫小明求出砌墻磚塊的厚度a的大小(每塊磚的厚度相等).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知平行四邊形ABCD的點(diǎn)A(0,﹣2)、點(diǎn)B(3m,4m+1)(m≠﹣1),點(diǎn)C(6,2),則對(duì)角線BD的最小值是( )
A. 3 B. 2 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)七年級(jí)四班的同學(xué)在體檢中測(cè)量了自己的身高,并求出了該班同學(xué)的平均身高.
(1)下表給出了該班5名同學(xué)的身高情況(單位:cm),試完成該表,并求出該班同學(xué)的平均身高.
姓名 | 劉杰 | 劉濤 | 李明 | 張春 | 劉建 |
身高 | 161 |
|
| 165 | 155 |
身高與全班同 學(xué)平均身高差 | +3 | ﹣1 | 0 |
|
|
(2)誰(shuí)最高?誰(shuí)最矮?
(3)計(jì)算這5名同學(xué)的平均身高是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:()﹣2﹣+(﹣4)0﹣cos45°.
【答案】1
【解析】試題分析:把原式的第一項(xiàng)根據(jù)負(fù)整數(shù)指數(shù)冪的意義化簡(jiǎn),第二項(xiàng)根據(jù)算術(shù)平方根的定義求出9的算術(shù)平方根,第三項(xiàng)根據(jù)零指數(shù)公式化簡(jiǎn),最后一項(xiàng)利用特殊角的三角函數(shù)值化簡(jiǎn),合并后即可求出值.
試題解析:原式=4﹣3+1﹣
=2﹣1
=1.
【題型】解答題
【結(jié)束】
16
【題目】《九章算術(shù)》“勾股”章有一題:“今有二人同所立,甲行率七,乙行率三.乙東行,甲南行十步而斜東北與乙會(huì).問甲乙行各幾何”.大意是說(shuō),已知甲、乙二人同時(shí)從同一地
點(diǎn)出發(fā),甲的速度為7,乙的速度為3.乙一直向東走,甲先向南走10步,后又斜向北偏東方向走了一段后與乙相遇.那么相遇時(shí),甲、乙各走了多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交AB于點(diǎn)D,交BC于點(diǎn)E.
(1)求證:BE=CE;
(2)若BD=2,BE=3,求AC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com