【題目】已知曲線C的極坐標方程為ρ﹣4cosθ+3ρsin2θ=0,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l過點M(1,0),傾斜角為 . (Ⅰ)求曲線C的直角坐標方程與直線l的參數(shù)方程;
(Ⅱ)若曲線C經(jīng)過伸縮變換 后得到曲線C′,且直線l與曲線C′交于A,B兩點,求|MA|+|MB|.

【答案】解:(Ⅰ)∵曲線C的極坐標方程為ρ﹣4cosθ+3ρsin2θ=0,∴ρ2﹣4ρcosθ+3ρ2sin2θ=0, ∴曲線C的直角坐標方程為x2+y2﹣4x+3y2=0,整理,得(x﹣2)2+4y2=4,
∵直線l過點M(1,0),傾斜角為 ,
∴直線l的參數(shù)方程為 ,即 ,(t是參數(shù)).
(Ⅱ)∵曲線C經(jīng)過伸縮變換 后得到曲線C′,
∴曲線C′為:(x﹣2)2+y2=4,
把直線l的參數(shù)方程 ,(t是參數(shù))代入曲線C′:(x﹣2)2+y2=4,得:
,
設A,B對應的參數(shù)分別為t1 , t2 , 則t1+t2= ,t1t2=﹣3,
∴|MA|+|MB|=|t1|+|t2|=|t1﹣t2|= = =
【解析】(Ⅰ)曲線C的極坐標方程化為ρ2﹣4ρcosθ+3ρ2sin2θ=0,由此能求出曲線C的直角坐標方程;由直線l過點M(1,0),傾斜角為 ,能求出直線l的參數(shù)方程.(Ⅱ)由曲線C經(jīng)過伸縮變換 后得到曲線C′,求出曲線C′為:(x﹣2)2+y2=4,把直線l的參數(shù)方程代入曲線C′,得: ,設A,B對應的參數(shù)分別為t1 , t2 , 則t1+t2= ,t1t2=﹣3,由此能求出|MA|+|MB|.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對應的邊分別為a,b,c,a﹣b=bcosC.
(1)求證:sinC=tanB;
(2)若a=1,C為銳角,求c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若對任意的實數(shù)a,函數(shù)f(x)=(x﹣1)lnx﹣ax+a+b有兩個不同的零點,則實數(shù)b的取值范圍是(
A.(﹣∞,﹣1]
B.(﹣∞,0)
C.(0,1)
D.(0,+∞)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知f(x)=|x+a|,g(x)=|x+3|﹣x,記關(guān)于x的不等式f(x)<g(x)的解集為M.
(1)若a﹣3∈M,求實數(shù)a的取值范圍;
(2)若[﹣1,1]M,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設△ABC的內(nèi)角A、B、C的對邊長分別為a、b、c.設S為△ABC的面積,滿足S= (a2+c2﹣b2). (Ⅰ)求B;
(Ⅱ)若b= ,求( ﹣1)a+2c的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知三角形△ABC的三邊長構(gòu)成公差為2的等差數(shù)列,且最大角的正弦值為 ,則這個三角形的周長為(
A.15
B.18
C.21
D.24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+x2﹣2ax+1(a為常數(shù)).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若對任意的 ,都存在x0∈(0,1]使得不等式 成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果關(guān)于x的分式方程 ﹣3= 有負分數(shù)解,且關(guān)于x的不等式組 的解集為x<﹣2,那么符合條件的所有整數(shù)a的積是(  )
A.﹣3
B.0
C.3
D.9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+2x經(jīng)過原點O,且與直線y=x﹣2交于B,C兩點.

(1)求拋物線的頂點A的坐標及點B,C的坐標;
(2)求證:∠ABC=90°;
(3)在直線BC上方的拋物線上是否存在點P,使△PBC的面積最大?若存在,請求出點P的坐標;若不存在,請說明理由;
(4)若點N為x軸上的一個動點,過點N作MN⊥x軸與拋物線交于點M,則是否存在以O,M,N為頂點的三角形與△ABC相似?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案