【題目】如圖1,拋物線與軸交于點和點,與軸交于點,拋物線的頂點為軸于點.將拋物線平移后得到頂點為且對稱軸為直的拋物線.
(1)求拋物線的解析式;
(2)如圖2,在直線上是否存在點,使是等腰三角形?若存在,請求出所有點的坐標:若不存在,請說明理由;
(3)點為拋物線上一動點,過點作軸的平行線交拋物線于點,點關(guān)于直線的對稱點為,若以為頂點的三角形與全等,求直線的解析式.
【答案】(1)拋物線的解析式為;(2)點的坐標為,,;(3)的解析式為或.
【解析】(1)把和代入求出a、c的值,進而求出y1,再根據(jù)平移得出y2即可;
(2)拋物線的對稱軸為,設,已知,過點作軸于,分三種情況時行討論等腰三角形的底和腰,得到關(guān)于t的方程,解方程即可;
(3)設,則,根據(jù)對稱性得,分點在直線的左側(cè)或右側(cè)時,結(jié)合以構(gòu)成的三角形與全等求解即可.
詳解:(1)由題意知,
,
解得,
所以,拋物線y的解析式為;
因為拋物線平移后得到拋物線,且頂點為,
所以拋物線的解析式為,
即: ;
(2)拋物線的對稱軸為,設,已知,
過點作軸于,
則 ,
,
,
當時,
即,
解得或;
當時,得,無解;
當時,得,解得;
綜上可知,在拋物線的對稱軸上存在點使是等腰三角形,此時點的坐標為,,.
(3)設,則,
因為關(guān)于對稱,
所以,
情況一:當點在直線的左側(cè)時,
,
,
又因為以構(gòu)成的三角形與全等,
當且時,,
可求得,即點與點重合
所以,
設的解析式,
則有
解得,
即的解析式為,
當且時,無解,
情況二:當點在直線右側(cè)時,
,
,
同理可得
的解析式為,
綜上所述, 的解析式為或.
科目:初中數(shù)學 來源: 題型:
【題目】某服裝店用960元購進一批服裝,并以每件46元的價格全部售完由于服裝暢銷,服裝店又用2220元,再次以比第一次進價多5元的價格購進服裝,數(shù)量是第一次購進服裝的2倍,仍以每件46元的價格出售.
該服裝店第一次購買了此種服裝多少件?
兩次出售服裝共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=ax2+2x+c與x軸交于A(﹣4,0),B(1,0)兩點,過點B的直線y=kx+分別與y軸及拋物線交于點C,D.
(1)求直線和拋物線的表達式;
(2)動點P從點O出發(fā),在x軸的負半軸上以每秒1個單位長度的速度向左勻速運動,設運動時間為t秒,當t為何值時,△PDC為直角三角形?請直接寫出所有滿足條件的t的值;
(3)如圖2,將直線BD沿y軸向下平移4個單位后,與x軸,y軸分別交于E,F(xiàn)兩點,在拋物線的對稱軸上是否存在點M,在直線EF上是否存在點N,使DM+MN的值最?若存在,求出其最小值及點M,N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】奉節(jié)臍橙是重慶市奉節(jié)縣特產(chǎn),中國地理標志產(chǎn)品,眼下,正值奉節(jié)臍橙銷售旺季,某商家看準商機,第一次用4800元購進一批奉節(jié)臍橙,銷售良好,于是第二次又用12000元購進一批奉節(jié)臍橙,但此時進價比第一次漲了2元,所購進的數(shù)量恰好是第一次購進數(shù)量的兩倍.
(1)求第一次購進奉節(jié)臍橙的進價.
(2)實際銷售中,兩次售價均相同,在銷售過程中,由于消費者挑選后,果品下降,第一批奉節(jié)臍橙的最后100千克八折售出,第二批奉節(jié)臍橙的最后800千克九折售出,若售完這兩批奉節(jié)臍橙的獲利不低于9400元,則售價至少為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在平行四邊形中,,為邊的中點,連接;
(1)如圖1,若,,求平行四邊形的面積;
(2)如圖2,連接,將沿翻折得到,延長與交于點,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=3cm,AC=4cm,按圖中所示方法將△BCD沿BD折疊,使點C落在AB邊的C′點,那么△ADC′的面積是____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某通訊公司推出①,②兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分)與費用y(元)之間的函數(shù)關(guān)系如圖所示.
(1)有月租的收費方式是________(填“①”或“②”),月租費是________元;
(2)分別求出①,②兩種收費方式中y與自變量x之間的函數(shù)表達式;
(3)請你根據(jù)用戶通訊時間的多少,給出經(jīng)濟實惠的選擇建議.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com