【題目】某通訊公司推出①,②兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分)與費用y(元)之間的函數(shù)關(guān)系如圖所示.
(1)有月租的收費方式是________(填“①”或“②”),月租費是________元;
(2)分別求出①,②兩種收費方式中y與自變量x之間的函數(shù)表達式;
(3)請你根據(jù)用戶通訊時間的多少,給出經(jīng)濟實惠的選擇建議.
【答案】(1)① 30;(2)y1=0.1x+30,y2=0.2x;(3)當通話時間少于300分鐘時,選擇通話方式②實惠;當通話時間超過300分鐘時,選擇通話方式①實惠;當通話時間為300分鐘時,選擇通話方式①,②花費一樣.
【解析】試題分析:(1)根據(jù)當通訊時間為零的時候的函數(shù)值可以得到哪種方式有月租,哪種方式?jīng)]有,有多少;
(2)根據(jù)圖象經(jīng)過的點的坐標設出函數(shù)的解析式,用待定系數(shù)法求函數(shù)的解析式即可;
(3)求出當兩種收費方式費用相同的時候自變量的值,以此值為界說明消費方式即可.
解:(1)①;30;
(2)設y1=k1x+30,y2=k2x,由題意得:將(500,80),(500,100)分別代入即可:
500k1+30=80,
∴k1=0.1,
500k2=100,
∴k2=0.2
故所求的解析式為y1=0.1x+30; y2=0.2x;
(3)當通訊時間相同時y1=y2,得0.2x=0.1x+30,解得x=300;
當x=300時,y=60.
故由圖可知當通話時間在300分鐘內(nèi),選擇通話方式②實惠;
當通話時間超過300分鐘時,選擇通話方式①實惠;
當通話時間在300分鐘時,選擇通話方式①、②一樣實惠.
科目:初中數(shù)學 來源: 題型:
【題目】國家限購以來,二手房和新樓盤的成交量迅速下降.據(jù)統(tǒng)計,江陰在限購前某季度二手房和新樓盤成交量為9500套.限購后,同一季度二手房和新樓盤的成交量共4425套.其中二手房成交量比限購前減少55﹪,新樓盤成交量比限購前減少52﹪.
(1)問限購后二手房和新樓盤各成交多少套?
(2)在成交量下跌的同時,房價也大幅跳水.某樓盤限購前均價為12000元/m2,限購后,無人問津,房價進行調(diào)整,二次下調(diào)后均價為7680元/m2,求平均每次下調(diào)的百分率?總理表態(tài):讓房價回歸合理價位.合理價位為房價是可支配收入的3~6倍,假設江陰平均每戶家庭(三口之家)的年可支配收入為9萬元,每戶家庭的平均住房面積為80 m2,問下調(diào)后的房價回到合理價位了嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,對于點P(a,b)和點Q(a,b'),給出如下定義:
若b'=,則稱點Q為點P的限變點.例如:點(3,﹣2)的限變點的坐標是(3,﹣2),點(﹣1,5)的限變點的坐標是(﹣1,﹣5).
(1)①點(﹣,1)的限變點的坐標是 ;
②在點A(﹣1,2),B(﹣2,﹣1)中有一個點是函數(shù)y=圖象上某一個點的限交點,這個點是 ;
(2)若點P在函數(shù)y=﹣x+3的圖象上,當﹣2≤x≤6時,求其限變點Q的縱坐標b'的取值范圍;
(3)若點P在關(guān)于x的二次函數(shù)y=x2﹣2tx+t2+t的圖象上,其限變點Q的縱坐標b'的取值范圍是b'≥m或b'<n,其中m>n.令s=m﹣n,求s關(guān)于t的函數(shù)解析式及s的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線與軸交于點和點,與軸交于點,拋物線的頂點為軸于點.將拋物線平移后得到頂點為且對稱軸為直的拋物線.
(1)求拋物線的解析式;
(2)如圖2,在直線上是否存在點,使是等腰三角形?若存在,請求出所有點的坐標:若不存在,請說明理由;
(3)點為拋物線上一動點,過點作軸的平行線交拋物線于點,點關(guān)于直線的對稱點為,若以為頂點的三角形與全等,求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校八年級學生某科目期末評價成績是由完成作業(yè)、單元檢測、期末考試三項成績構(gòu)成的,如果期末評價成績80分以上(含80分),則評為“優(yōu)秀”.下面表中是小張和小王兩位同學的成績記錄:
完成作業(yè) | 單元測試 | 期末考試 | |
小張 | 70 | 90 | 80 |
小王 | 60 | 75 |
(1)若按三項成績的平均分記為期末評價成績,請計算小張的期末評價成績;
(2)若按完成作業(yè)、單元檢測、期末考試三項成績按的權(quán)重來確定期末評價成績.
①請計算小張的期末評價成績?yōu)槎嗌俜郑?/span>
②小王在期末(期末成績?yōu)檎麛?shù))應該最少考多少分才能達到優(yōu)秀?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一家商店進行門店升級需要裝修,裝修期間暫停營業(yè),若請甲乙兩個裝修組同時施工,8天可以完成,需付費用共3520元;若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付費用3480元,問:
甲、乙兩組工作一天,商店各應付多少錢?
已知甲組單獨完成需12天,乙組單獨完成需24天,單獨請哪個組,商店所需費用最少?
裝修完畢第二天即可正常營業(yè),且每天仍可盈利200元即裝修前后每天盈利不變,你認為商店應如何安排施工更有利?說說你的理由可用問的條件及結(jié)論
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明家在“吾悅廣場”購買了一間商鋪,準備承包給甲、乙兩家裝修公司進行店面裝修,經(jīng)調(diào)查:甲公司單獨完成該工程的時間是乙公司的2倍,已知甲、乙兩家公司共同完成該工程建設需20天;若甲公司每天所需工作費用為650元,乙公司每天所需工作費用為1200元,若從節(jié)約資金的角度考慮,則應選擇哪家公司更合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,A、B兩點的坐標分別為A(0,m)、B(n,0),且|m﹣n﹣3|+=0,點P從A出發(fā),以每秒1個單位的速度沿射線AO勻速運動,設點P的運動時間為t秒.
(1)求OA、OB的長;
(2)連接PB,設△POB的面積為S,用t的式子表示S;
(3)過點P作直線AB的垂線,垂足為D,直線PD與x軸交于點E,在點P運動的過程中,是否存在這樣的點P,使△EOP≌△AOB?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有甲、乙兩個箱子,其中甲箱內(nèi)有顆球,分別標記號碼,且號碼為不重復的整數(shù),乙箱內(nèi)沒有球.已知小育從甲箱內(nèi)拿出顆球放入乙箱后,乙箱內(nèi)球的號碼的中位數(shù)為.若此時甲箱內(nèi)有顆球的號碼小于,有顆球的號碼大于,若他們的中位數(shù)都為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com