【題目】已知點(diǎn)(-1,y1),(2,y2),(3,y3)在反比例函數(shù)的圖象上.下列結(jié)論中正確的是( )
A. y1>y2>y3 B. y1>y3>y2 C. y3>y1>y2 D. y2>y3>y1
【答案】B
【解析】試題分析:先判斷出函數(shù)反比例函數(shù)y=的圖象所在的象限,再根據(jù)圖象在每一象限的增減性及每一象限坐標(biāo)的特點(diǎn)進(jìn)行判斷即可.
解:∵k2≥0,∴﹣k2≤0,﹣k2﹣1<0,
∴反比例函數(shù)y=的圖象在二、四象限,
∵點(diǎn)(﹣1,y1)的橫坐標(biāo)為﹣1<0,∴此點(diǎn)在第二象限,y1>0;
∵(2,y2),(3,y3)的橫坐標(biāo)3>2>0,∴兩點(diǎn)均在第四象限y2<0,y3<0,
∵在第四象限內(nèi)y隨x的增大而增大,
∴0>y3>y2,
∴y1>y3>y2.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1+∠2=180°,∠A=∠C,AD平分∠BDF.
(1)AE與FC的位置關(guān)系如何?為什么?
(2)AD與BC的位置關(guān)系如何?為什么?
(3)BC平分∠DBE嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a、b,A、B兩點(diǎn)之間的距離表示為AB=|a﹣b|,回答下列問題:
(1)數(shù)軸上表示1和﹣3的兩點(diǎn)之間的距離是 ;
(2)數(shù)軸上表示x和﹣1的兩點(diǎn)分別是點(diǎn)A和B,如果AB=2,那么x= ;
(3)當(dāng)|x﹣6|+|x﹣1|的最小值是 。若|x﹣3|+|x﹣b|的最小值為4,則b的值為 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在東營市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購進(jìn)一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.
(1)求每臺電腦、每臺電子白板各多少萬元?
(2)根據(jù)學(xué)校實(shí)際,需購進(jìn)電腦和電子白板共30臺,總費(fèi)用不超過30萬元,但不低于28萬元,請你通過計(jì)算求出有幾種購買方案,哪種方案費(fèi)用最低.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(10,0),以O(shè)A為直徑在第一象限內(nèi)作半圓C,點(diǎn)B是該半圓周上的一動點(diǎn),連結(jié)OB、AB,并延長AB至點(diǎn)D,使DB=AB,過點(diǎn)D作x軸垂線,分別交x軸、直線OB于點(diǎn)E、F,點(diǎn)E為垂足,連結(jié)CF.
(1)當(dāng)∠AOB=30°時,求弧AB的長;
(2)當(dāng)DE=8時,求線段EF的長;
(3)在點(diǎn)B運(yùn)動過程中,是否存在以點(diǎn)E、C、F為頂點(diǎn)的三角形與△AOB相似,若存在,請求出此時點(diǎn)E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正確的結(jié)論的有__________.(把正確結(jié)論的序號都寫上去)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等邊三角形ABC.如圖,
(1)分別以點(diǎn)A,B為圓心,大于的AB長為半徑作弧,兩弧相交于M,N兩點(diǎn);
(2)作直線MN交AB于點(diǎn)D;
(2)分別以點(diǎn)A,C為圓心,大于AC的長為半徑作弧,兩弧相交于H,L兩點(diǎn);
(3)作直線HL交AC于點(diǎn)E;
(4)直線MN與直線HL相交于點(diǎn)O;
(5)連接OA,OB,OC.
根據(jù)以上作圖過程及所作圖形,下列結(jié)論:①OB=2OE;②AB=2OA;③OA=OB=OC;④∠DOE=120°,正確的是( )
A.①②③④B.①③④C.①②③D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】生活與數(shù)學(xué)
日 | 一 | 二 | 三 | 四 | 五 | 六 |
1 | 2 | 3 | 4 | 5 | 6 | |
7 | 8 | 9 | 10 | 11 | 12 | 13 |
14 | 15 | 16 | 17 | 18 | 19 | 20 |
21 | 22 | 23 | 24 | 25 | 26 | 27 |
(1)姆同學(xué)在某月的日歷上圈出2×2個數(shù),正方形的方框內(nèi)的四個數(shù)的和是48,那么這四個數(shù)是_______.
(2)麗也在上面的日歷上圈出2×2個數(shù),斜框內(nèi)的四個數(shù)的和是46,則它們分別是_____.
(3)莉也在日歷上圈出5個數(shù),呈十字框形,它們的和是55,則中間的數(shù)是______.
(4)某月有5個星期日的和是75,則這個月中最后一個星期日是______號?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com