【題目】如圖,是的直徑,點(diǎn)是上一點(diǎn),點(diǎn)是的內(nèi)心,的延長(zhǎng)線交于點(diǎn),連.
(1)求證:;
(2)若,,①求的長(zhǎng); ②求的面積.
【答案】(1)證明見(jiàn)解析;(2)①10;②24.
【解析】
(1)連接AI,運(yùn)用內(nèi)切圓的性質(zhì)及三角形外角的性質(zhì)問(wèn)題即可解決.
(2)①連接BD,證明DB=DI,進(jìn)而DB=DA;由勾股定理即可求得AB的長(zhǎng);
②作輔助線,構(gòu)造相似三角形,求得△ABC的AB邊上的高,即可解決問(wèn)題.
(1)連接AI.
∵點(diǎn)I是△ABC(AC<AB)的內(nèi)心,∴∠CAI=∠BAI,∠ACI=∠BCI.
∵∠DAB=∠BCI,∴∠DAB=∠ACI,∴∠DAB+∠OAI=∠ACI+∠CAI.
∵∠AID=∠ACI+∠CAI,∠DAI=∠DAB+∠OAI,∴∠AID=∠DAI,∴DA=DI.
(2)連接BI,OD,BD,過(guò)點(diǎn)C作CP⊥AB于點(diǎn)P.
①類(lèi)比(1)中的方法,同理可證DB=DI,∴DA=DB=DI=.
∵AB是⊙O的直徑,∴∠ADB=90°,由勾股定理得:
=10,即AB的長(zhǎng)為10.
②∵∠ACD=∠BCD,∠DAQ=∠BCD,∴∠ACD=∠DAQ,而∠ADC=∠ADQ,∴△ADC≌△QDA,∴,∴=,∴.
∵DA=DB,AO=BO,∴DO⊥AB,.
而CP⊥AB,∴△CPQ∽△DOQ,∴,∴CP==,∴.即△ABC的面積為24.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為弘揚(yáng)中華民族傳統(tǒng)文化,某市舉辦了中小學(xué)生“國(guó)學(xué)經(jīng)典大賽”,比賽項(xiàng)目為:A.唐詩(shī);B.宋詞;C.論語(yǔ);D.三字經(jīng).比賽形式分“單人組”和“雙人組”.
(1)小華參加“單人組”,他從中隨機(jī)抽取一個(gè)比賽項(xiàng)目,恰好抽中“論語(yǔ)”的概率是多少?
(2)小明和小紅組成一個(gè)小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊(duì)員的比賽項(xiàng)目不能相同,且每人只能隨機(jī)抽取一次.則恰好小明抽中“唐詩(shī)”且小紅抽中“宋詞”的概率是多少?小明和小紅都沒(méi)有抽到“三字經(jīng)”的概率是多少?請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法進(jìn)行說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩名同學(xué)做摸球游戲,他們把三個(gè)分別標(biāo)有1,2,3的大小和形狀完全相同的小球放在一個(gè)不透明的口袋中.
(1)求從袋中隨機(jī)摸出一球,標(biāo)號(hào)是1的概率;
(2)從袋中隨機(jī)摸出一球后放回,搖勻后再隨機(jī)摸出一球,若兩次摸出的球的標(biāo)號(hào)之和為偶數(shù)時(shí),則甲勝;若兩次摸出的球的標(biāo)號(hào)之和為奇數(shù)時(shí),則乙勝;試分析這個(gè)游戲是否公平?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形網(wǎng)格圖中,若每個(gè)小正方形的邊長(zhǎng)是1,與關(guān)于點(diǎn)對(duì)稱(chēng).
(1)畫(huà)出.
(2)與的位置關(guān)系是 .
(3)點(diǎn)在直線上,的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】運(yùn)動(dòng)會(huì)中裁判員使用的某品牌遮陽(yáng)傘如圖1所示,圖2是其剖面圖,若AG平分∠BAC與∠EDF,AB∥ED,求證:AC∥DF.
請(qǐng)將橫線上的證明過(guò)程和依據(jù)的定理補(bǔ)充完整.
證明:∵AB∥DE,
∴∠ =∠ ( )
∵AG平分∠BAC,AG平分∠EDF(已知)
∴∠DAC=∠DAB,∠GDF=∠GDE( ).
∴∠DAC=∠GDF( ).
∴AC∥DF( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形中,,為的中點(diǎn),連接并延長(zhǎng)交的延長(zhǎng)線于點(diǎn),連接平分.下列結(jié)論:①;②垂直平分;③;④;其中正確的是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,∠ACB=90°,AC=BC=4,D是AB的中點(diǎn),點(diǎn)E是射線CB上的動(dòng)點(diǎn),連接DE,DF⊥DE交射線AC于點(diǎn)F.
(1)若點(diǎn)E在線段CB上.
①求證:AF=CE.
②連接EF,試用等式表示AF、EB、EF這三條線段的數(shù)量關(guān)系,并說(shuō)明理由.
(2)當(dāng)EB=3時(shí),求EF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com