【題目】如圖,D是△ABC的BC邊上一點(diǎn),連接AD,作△ABD的外接圓,將△ADC沿直線AD折疊,點(diǎn)C的對(duì)應(yīng)點(diǎn)E落在圓上,連接AE,AE與BD相交于點(diǎn)F.
(1)求證:AE=AB;
(2)若E為弧BD的中點(diǎn),試說(shuō)明:DE2=EF·AE;
(3)在(2)的條件下,若cos∠ADB=,BE=2,求AF的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3) AF=3.
【解析】
(1)先根據(jù)翻折的性質(zhì)和圓周角定理得出∠C=∠AED=∠ABC和AC=AE再推出AC=AB,從而得到AE=AB;
(2)根據(jù)E為弧BD的中點(diǎn)和圓周角定理得出∠DAE=∠EDB,然后證明△DEF∽△AED;
(3)作AH⊥BE,利用三角函數(shù)求出AE=4,利用(2)相似線段關(guān)系求出EF=1,從而得出:AF=3.
(1)由折疊的性質(zhì)可知△ADE≌△ADC
∴∠AED=∠ACD,AE=AC,
∵∠ABD=∠AED,
∴∠ABD=∠ACD,
∴AB=AC,
∴AE=AB;
(2)∵E為弧BD的中點(diǎn)
∴∠DAE=∠EAB
∵∠EDB=∠EAB
∴∠DAE=∠EDB
∴△DEF∽△AED
∴
∴
(3)過(guò)A作AH⊥BE于點(diǎn)H
∵AB=AE,BE=2,
∴BH=EH=1,
∵∠ABE=∠AEB=∠ADB,,
∴,
∴.
∴AC=AB=4
∵E為弧BD的中點(diǎn)
∴DE=EB=2
根據(jù)(2)中的結(jié)論
可得:
∴EF=1
∴AF=AE-EF=3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,是矩形的邊上的一點(diǎn),AC是其對(duì)角線,連接AE,過(guò)點(diǎn)E作交于點(diǎn), 交DC于點(diǎn)F,過(guò)點(diǎn)B作于點(diǎn)G,交AE于點(diǎn)H.
(1)求證:∽;
(2)求證:;
(3)若E是BC的中點(diǎn),,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖C是線段BD上一點(diǎn),分別以BC、CD為邊在BD同側(cè)作等邊△ABC和等邊△CDE,AD交CE于F,BE交AC于G,則圖中可通過(guò)旋轉(zhuǎn)而相互得到的三角形對(duì)數(shù)有( )
A.1對(duì)B.2對(duì)C.3對(duì)D.4對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是等腰Rt△ABC外一點(diǎn),把線段BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BP',已知∠AP'B=135°,P'A:P'C=1:3,則P'A:PB=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形BOMN的一邊延長(zhǎng)線交x軸于點(diǎn)D,OB=18,OD=12,點(diǎn)C為線段BO上一點(diǎn),以C點(diǎn)為圓心,CO為半徑的圓過(guò)M、N兩點(diǎn),且與y軸交于點(diǎn)A,則OA長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)得到的.連接BE、CF相交于點(diǎn)D.
(1)求證:BE=CF.
(2)當(dāng)四邊形ACDE為菱形時(shí),求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)在“五一”促銷活動(dòng)中規(guī)定,顧客每消費(fèi)100元就能獲得一次中獎(jiǎng)機(jī)會(huì).為了活躍氣氛.設(shè)計(jì)了兩個(gè)抽獎(jiǎng)方案:
方案一:轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,轉(zhuǎn)出紅色可領(lǐng)取一份獎(jiǎng)品;
方案二:轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,兩次都轉(zhuǎn)出紅色可領(lǐng)取一份獎(jiǎng)品.(兩個(gè)轉(zhuǎn)盤都被平均分成3份)
(1)若轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤,求領(lǐng)取一份獎(jiǎng)品的概率;
(2)如果你獲得一次抽獎(jiǎng)機(jī)會(huì),你會(huì)選擇哪個(gè)方案?請(qǐng)采用列表法或樹(shù)狀圖說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有長(zhǎng)為24m的籬笆,圍成中間隔有一道籬笆的長(zhǎng)方形的花圃,且花圃的長(zhǎng)可借用一段墻體(墻體的最大可用長(zhǎng)度a=10m).
(1)如果所圍成的花圃的面積為45m2,試求寬AB的長(zhǎng);
(2)按題目的設(shè)計(jì)要求,能圍成面積比45m2更大的花圃嗎?如果能,請(qǐng)求出最大面積,并說(shuō)明圍法;如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系xOy中,拋物線y=ax2+2x+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸相交于點(diǎn)C(0,3),拋物線的對(duì)稱軸為直線.
(1)求這條拋物線的關(guān)系式,并寫出其對(duì)稱軸和頂點(diǎn)M的坐標(biāo);
(2)如果直線y=kx+b經(jīng)過(guò)C、M兩點(diǎn),且與x軸交于點(diǎn)D,點(diǎn)C關(guān)于直線的對(duì)稱點(diǎn)為N,試證明四邊形CDAN是平行四邊形;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com