【題目】已知一次函數(shù)y1kx+nn0)和反比例函數(shù)y2m0x0).

1)如圖1,若n=﹣2,且函數(shù)y1、y2的圖象都經(jīng)過(guò)點(diǎn)A3,4).

①求m,k的值;

②直接寫出當(dāng)y1y2時(shí)x的范圍;

2)如圖2,過(guò)點(diǎn)P1,0)作y軸的平行線l與函數(shù)y2的圖象相交于點(diǎn)B,與反比例函數(shù)y3x0)的圖象相交于點(diǎn)C

①若k2,直線l與函數(shù)y1的圖象相交點(diǎn)D.當(dāng)點(diǎn)BC、D中的一點(diǎn)到另外兩點(diǎn)的距離相等時(shí),求mn的值;

②過(guò)點(diǎn)Bx軸的平行線與函數(shù)y1的圖象相交于點(diǎn)E.當(dāng)mn的值取不大于1的任意實(shí)數(shù)時(shí),點(diǎn)B、C間的距離與點(diǎn)B、E間的距離之和d始終是一個(gè)定值.求此時(shí)k的值及定值d

【答案】1m=12;k=2;x3;(2mn142;k1d1

【解析】

1)①將點(diǎn)A的坐標(biāo)代入一次函數(shù)表達(dá)式即可得出k的值,將點(diǎn)A的坐標(biāo)代入反比例函數(shù)表達(dá)式即可得出m的值;②由圖象可以直接得出結(jié)果;
2)①當(dāng)x1時(shí),點(diǎn)D、BC的坐標(biāo)分別為(1,2+n)、(1,m)、(1,n),則BD=|2+n-m|,BC=m-nDC=2+n-n=2,由BD=BCBD=DCBC=CD,即可求解;②先得出點(diǎn)E的坐標(biāo)為,當(dāng)點(diǎn)E在點(diǎn)B左側(cè)時(shí),d=BC+BE=m-n+=1+m-n)(1-),由1-=0即可求解;當(dāng)點(diǎn)E在點(diǎn)B右側(cè)時(shí),同理BC+BE=(mn)(1+)﹣1,不合題意舍去.

解:(1當(dāng)n=-2時(shí),一次函數(shù)為y1=kx-2,

將點(diǎn)A的坐標(biāo)(3,4)代入一次函數(shù)表達(dá)式得,4=3k-2,解得k2,

將點(diǎn)A的坐標(biāo)(34)代入反比例函數(shù)y2得,m3×412;

②由圖象可以看出x3時(shí),y1y2;

2k=2,則y1=2x+n,

當(dāng)x1時(shí),點(diǎn)DB、C的坐標(biāo)分別為(1,2+n)、(1m)、(1,n),

BD|2+nm|,BCmn,DC2+nn2

BDBCBDDCBCCD,

即:|2+nm|mn|2+nm|2mn2,

即:mn1024

當(dāng)mn0時(shí),mn與題意不符,

點(diǎn)D不能在C的下方,即BCCD也不存在,n+2n,

當(dāng)BD重合時(shí),mn2成立,

mn142;

∵點(diǎn)E的縱坐標(biāo)與點(diǎn)B的縱坐標(biāo)相等為m,

y1kx+n中令y1=m得,點(diǎn)E的橫坐標(biāo)為,

當(dāng)點(diǎn)E在點(diǎn)B左側(cè)時(shí),

dBC+BEmn+1)=1+mn)(1),

mn的值取不大于1的任意數(shù)時(shí),d始終是一個(gè)定值,

當(dāng)10時(shí),此時(shí)k1,從而d1

當(dāng)點(diǎn)E在點(diǎn)B右側(cè)時(shí),

同理dBC+BE=(mn)(1+)﹣1,

當(dāng)1+0,k=﹣1時(shí),(不合題意舍去)

k1,d1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC的平分線AD與邊BC的垂直平分線ED相交于點(diǎn)D,過(guò)點(diǎn)DDFACAC延長(zhǎng)線于點(diǎn)F,若AB=8AC=4,則CF的長(zhǎng)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)角線長(zhǎng)分別為的菱形如圖所示,點(diǎn)為對(duì)角線的交點(diǎn).過(guò)點(diǎn)折疊菱形,使兩點(diǎn)重合,是折痕,若,則的長(zhǎng)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y (x>0)的圖象與邊長(zhǎng)是6的正方形OABC的兩邊AB,BC分別相交于MN 兩點(diǎn),△OMN的面積為10.若動(dòng)點(diǎn)Px軸上,則PMPN的最小值是(  )

A. 6 B. 10 C. 2 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,對(duì)角線AC⊥AB,OAC的中點(diǎn),經(jīng)過(guò)點(diǎn)O的直線交ADE,交BCF,連結(jié)AF、CE,現(xiàn)在添加一個(gè)適當(dāng)?shù)臈l件,使四邊形AFCE是菱形,下列條件:①OE=OA;②EF⊥AC;③AF平分∠BAC;④EAD中點(diǎn).正確的有( )個(gè).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角三角形△ABC內(nèi)部有一動(dòng)點(diǎn)P,∠BAC=90°,連接PAPB,PC,若AC=6,AB=8,求PA+PB+PC的最小值_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測(cè)得A,C之間的距離為12cm,點(diǎn)B,D之間的距離為16m,則線段AB的長(zhǎng)為  

A. B. 10cmC. 20cmD. 12cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市對(duì)火車站進(jìn)行了大規(guī)模的改建,改建后的火車站除原有的普通售票窗口外,新增了自動(dòng)打印車票的無(wú)人售票窗口.某日,從早8點(diǎn)開始到上午11點(diǎn),每個(gè)普通售票窗口售出的車票數(shù)y1(張)與售票時(shí)間x(小時(shí))的正比例函數(shù)關(guān)系滿足圖中的圖象,每個(gè)無(wú)人售票窗口售出的車票數(shù)y2(張)與售票時(shí)間x(小時(shí))的函數(shù)關(guān)系滿足圖中的圖象.

1)圖中圖象的前半段(含端點(diǎn))是以原點(diǎn)為頂點(diǎn)的拋物線的一部分,根據(jù)圖中所給數(shù)據(jù)確定拋物線的表達(dá)式為   ,其中自變量x的取值范圍是   ;

2)若當(dāng)天共開放5個(gè)無(wú)人售票窗口,截至上午9點(diǎn),兩種窗口共售出的車票數(shù)不少于1450張,則至少需要開放多少個(gè)普通售票窗口?

3)上午10點(diǎn)時(shí),每個(gè)普通售票窗口與每個(gè)無(wú)人售票窗口售出的車票數(shù)恰好相同,試確定圖中圖象的后半段一次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張琪和爸爸到曲江池遺址公園運(yùn)動(dòng),兩人同時(shí)從家出發(fā),沿相同路線前行,途中爸爸有事返回,張琪繼續(xù)前行5分鐘后也原路返回,兩人恰好同時(shí)到家張琪和爸爸在整個(gè)運(yùn)動(dòng)過(guò)程中離家的路點(diǎn)y1(米),y2(米)與運(yùn)動(dòng)時(shí)間x(分)之間的函數(shù)關(guān)系如圖所示

1)求爸爸返問(wèn)時(shí)離家的路程y2(米)與運(yùn)動(dòng)時(shí)間x(分)之間的函數(shù)關(guān)系式;

2)張琪開始返回時(shí)與爸爸相距多少米?

查看答案和解析>>

同步練習(xí)冊(cè)答案