【題目】如圖,在直角三角形△ABC內(nèi)部有一動點P,∠BAC=90°,連接PA,PB,PC,若AC=6,AB=8,求PA+PB+PC的最小值_____.
【答案】
【解析】
如圖,將△ACP繞點C順時針旋轉(zhuǎn)60°得到△ECF,連接PF,BE,作EH⊥BA交BA的延長線于H.首先證明PA+PB+PC≥BE,求出BE的值即可解決問題.
如圖,將△ACP繞點C順時針旋轉(zhuǎn)60°得到△ECF,連接PF,BE,作EH⊥BA交BA的延長線于H.
由旋轉(zhuǎn)的旋轉(zhuǎn)可知:PA=EF,△PCF,△ACE是等邊三角形,
∴PF=PC,
∴PA+PB+PC=EF+FP+PB,
∵EF+FP+PB≥BE,
∴當B,P,F,E共線時,PA+PB+PC的值最小,
∵∠BAC=90°,∠CAE=60°,
∴∠HAE=180°﹣90°﹣60°=30°,
∵EH⊥AH,AE=AC=6,
∴EH=AE=3.AH=EH=3,
∴BE===,
∴PA+PB+PC的最小值為.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,以點M(1,0)為圓心的圓與y軸,x軸分別交于點A,B,C,D,與⊙M相切于點H的直線EF交x軸于點E(,0),交y軸于點F(0,).
(1)求⊙M的半徑r;
(2)如圖2所示,連接CH,弦HQ交x軸于點P,若cos∠QHC=,求的值;
(3)如圖3所示,點P為⊙M上的一個動點,連接PE,PF,求PF+PE的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】縉云山是國家級自然風景名勝區(qū),上周周末,小明和媽媽到縉云山游玩,登上了香爐峰觀景塔,從觀景塔底中心處水平向前走米到點處,再沿著坡度為的斜坡走一段距離到達點,此時回望觀景塔,更顯氣勢宏偉,在點觀察到觀景塔頂端的仰角為再往前沿水平方向走米到處,觀察到觀景塔頂端的仰角是,則觀景塔的高度為( )(tan22°≈0.4)
A.米B.米C.米D.米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓柱底面半徑為cm,高為18cm,點A、B分別是圓柱兩底面圓周上的點,且A、B在同一母線上,用一根棉線從A點順著圓柱側(cè)面繞3圈到B點,則這根棉線的長度最短為( )
A.24cmB.30cmC.2cmD.4cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y1=kx+n(n<0)和反比例函數(shù)y2=(m>0,x>0).
(1)如圖1,若n=﹣2,且函數(shù)y1、y2的圖象都經(jīng)過點A(3,4).
①求m,k的值;
②直接寫出當y1>y2時x的范圍;
(2)如圖2,過點P(1,0)作y軸的平行線l與函數(shù)y2的圖象相交于點B,與反比例函數(shù)y3=(x>0)的圖象相交于點C.
①若k=2,直線l與函數(shù)y1的圖象相交點D.當點B、C、D中的一點到另外兩點的距離相等時,求m﹣n的值;
②過點B作x軸的平行線與函數(shù)y1的圖象相交于點E.當m﹣n的值取不大于1的任意實數(shù)時,點B、C間的距離與點B、E間的距離之和d始終是一個定值.求此時k的值及定值d.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,=n,M為BC上的一點,連接BM.
(1)如圖1,若n=1,
①當M為AC的中點,當BM⊥CD于H,連接AH,求∠AHD的度數(shù);
②如圖2,當H為CD的中點,∠AHD=45°,求的值和∠CAH的度數(shù);
(2)如圖3,CH⊥AM于H,連接CH并延長交AC于Q,M為AC中點,直接寫出tan∠BHQ的值(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為積極響應政府提出的“綠色發(fā)展·低碳出行”號召,某社區(qū)決定購置一批共享單車,經(jīng)市場調(diào)查得知,購買3量男式單車與4輛女式單車費用相同,購買5輛男式單車與4輛女式單車共需16000元.
(1)求男式單車和女式單車的單價;
(2)該社區(qū)要求男式單比女式單車多4輛,兩種單車至少需要22輛,購置兩種單車的費用不超過50000元,該社區(qū)有幾種購置方案?怎樣購置才能使所需總費用最低,最低費用是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工藝品店購進A,B兩種工藝品,已知這兩種工藝品的單價之和為200元,購進2個A種工藝品和3個B種工藝品需花費520元.
(1)求A,B兩種工藝品的單價;
(2)該店主欲用9600元用于進貨,且最多購進A種工藝品36個,B種工藝品的數(shù)量不超過A種工藝品的2倍,則共有幾種進貨方案?
(3)已知售出一個A種工藝品可獲利10元,售出一個B種工藝品可獲利18元,該店主決定每售出一個B種工藝品,為希望工程捐款m元,在(2)的條件下,若A,B兩種工藝品全部售出后所有方案獲利均相同,則m的值是多少?此時店主可獲利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在畫有方格圖的平面直角坐標系中,△ABC的三個頂點均在格點上.
(1)將△ACB繞點B順時針方向旋轉(zhuǎn),在方格圖中用直尺畫出旋轉(zhuǎn)后對應的△A1C1B,則A1點的坐標是(_________),C1點的坐標是(_________).
(2)在方格圖中用直尺畫出△ACB關(guān)于原點O的中心對稱圖形△A2C2B2,則A2點的坐標是(_________),C2點的坐標是(_________).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com