【題目】如圖,在△ABC中,∠BAC的平分線AD與邊BC的垂直平分線ED相交于點(diǎn)D,過點(diǎn)DDFACAC延長線于點(diǎn)F,若AB=8,AC=4,則CF的長為_________

【答案】

【解析】

連接CD,DB,過點(diǎn)DDMAB于點(diǎn)M,證明△AFD≌△AMD,得到AF=AMFD=DM,證明RtCDFRtBDM,得到BM=CF,結(jié)合圖形計(jì)算,得到答案.

如圖,連接CDDB,過點(diǎn)DDMAB于點(diǎn)M

AD平分∠FAB,

∴∠FAD=DAM,

在△AFD和△AMD中,

,

∴△AFD≌△AMDAAS

AF=AMFD=DM,

DE垂直平分BC

CD=BD

RtCDFRtBDM中,

RtCDFRtBDMHL

BM=CF,

AB=AM+BM=AF+MB=AC+CF+MB=AC+2CF

8=4+2CF

解得,CF=2

故答案為:2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,以點(diǎn)為圓心,6為半徑的圓上有一個(gè)動(dòng)點(diǎn).連接、,則的最小值是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,將拋物線y=﹣x2+bx+c與直線y=﹣x+1相交于點(diǎn)A(0,1)和點(diǎn)B(3,﹣2),交x軸于點(diǎn)C,頂點(diǎn)為點(diǎn)F,點(diǎn)D是該拋物線上一點(diǎn).

1)求拋物線的函數(shù)表達(dá)式;

2)如圖1,若點(diǎn)D在直線AB上方的拋物線上,求DAB的面積最大時(shí)點(diǎn)D的坐標(biāo);

3)如圖2,若點(diǎn)D在對稱軸左側(cè)的拋物線上,且點(diǎn)E1,t)是射線CF上一點(diǎn),當(dāng)以C、BD為頂點(diǎn)的三角形與CAE相似時(shí),求所有滿足條件的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形AOBC的頂點(diǎn)O在原點(diǎn),邊AOBO分別在x軸和y軸上,點(diǎn)C坐標(biāo)為(4,4),點(diǎn)DBO的中點(diǎn),點(diǎn)P是邊OA上的一個(gè)動(dòng)點(diǎn),連接PD,以P為圓心,PD為半徑作圓,設(shè)點(diǎn)P橫坐標(biāo)為t,當(dāng)⊙P與正方形AOBC的邊相切時(shí),t的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識(shí),求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,以點(diǎn)M(1,0)為圓心的圓與y軸,x軸分別交于點(diǎn)AB,C,D,與⊙M相切于點(diǎn)H的直線EFx軸于點(diǎn)E,0),交y軸于點(diǎn)F0).

(1)⊙M的半徑r;

(2)如圖2所示,連接CH,弦HQx軸于點(diǎn)P,若cos∠QHC=,求的值;

(3)如圖3所示,點(diǎn)P⊙M上的一個(gè)動(dòng)點(diǎn),連接PE,PF,求PF+PE的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)坐標(biāo)為,并與軸交于點(diǎn),點(diǎn)是對稱軸與軸的交點(diǎn).

(1)求拋物線的解析式;

(2)如圖①所示, 是拋物線上的一個(gè)動(dòng)點(diǎn),且位于第一象限,連結(jié)BP、AP,的面積的最大值;

(3)如圖②所示,在對稱軸的右側(cè)作交拋物線于點(diǎn),求出點(diǎn)的坐標(biāo);并探究:軸上是否存在點(diǎn),使?若存在,求點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,我們定義直線為拋物線ab、c為常數(shù),a≠0)的“夢想直線”;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其“夢想三角形”,已知拋物線與其“夢想直線”交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C

1)填空:該拋物線的“夢想直線”的解析式為 ,點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為

2)如圖,點(diǎn)M為線段BC上一動(dòng)點(diǎn),將ACMAM所在直線為對稱軸翻折,點(diǎn)C的對稱點(diǎn)為N,若AMN為該拋物線的“夢想三角形”,求點(diǎn)N的坐標(biāo);

3)在該拋物線的“夢想直線”上,是否存在點(diǎn)P,使ACP為等腰三角形?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y1kx+nn0)和反比例函數(shù)y2m0x0).

1)如圖1,若n=﹣2,且函數(shù)y1、y2的圖象都經(jīng)過點(diǎn)A34).

①求m,k的值;

②直接寫出當(dāng)y1y2時(shí)x的范圍;

2)如圖2,過點(diǎn)P1,0)作y軸的平行線l與函數(shù)y2的圖象相交于點(diǎn)B,與反比例函數(shù)y3x0)的圖象相交于點(diǎn)C

①若k2,直線l與函數(shù)y1的圖象相交點(diǎn)D.當(dāng)點(diǎn)B、CD中的一點(diǎn)到另外兩點(diǎn)的距離相等時(shí),求mn的值;

②過點(diǎn)Bx軸的平行線與函數(shù)y1的圖象相交于點(diǎn)E.當(dāng)mn的值取不大于1的任意實(shí)數(shù)時(shí),點(diǎn)BC間的距離與點(diǎn)B、E間的距離之和d始終是一個(gè)定值.求此時(shí)k的值及定值d

查看答案和解析>>

同步練習(xí)冊答案