【題目】如圖1,已知A(a,0),B (0,b)分別為兩坐標(biāo)軸上的點(diǎn),且a,b滿足a2﹣24a+|b﹣12|=﹣144,且3OC=OA.

(1)A、B、C三點(diǎn)的坐標(biāo);

(2)D(2,0),過點(diǎn)D的直線分別交AB、BCE、F兩點(diǎn),且DF=DE,設(shè)E、F兩點(diǎn)的橫坐標(biāo)分別為xE、xP,求xE+xP的值;

(3)如圖2,若M(4,8),點(diǎn)Px軸上A點(diǎn)右側(cè)一動(dòng)點(diǎn),AHPM于點(diǎn)H,在HM上取點(diǎn)G,使HG=HA,連接CG,當(dāng)點(diǎn)P在點(diǎn)A右側(cè)運(yùn)動(dòng)時(shí),∠CGM的度數(shù)是否改變?若不變,請求其值;若改變,請說明理由.

【答案】(1)A(12,0),B(0,12),C(﹣4,0);(2)4;(3)不改變,∠CGM=45°.

【解析】

(1)由偶次方和算術(shù)平方根的非負(fù)性質(zhì)求出ab的值,得出點(diǎn)A、B的坐標(biāo),再求出OC,即可得出點(diǎn)C的坐標(biāo);

(2)作EG⊥x軸于G,F(xiàn)H⊥x軸于H,由三角形的面積關(guān)系得出DF=DE,由AAS證明△FDH≌△EDG,得出DH=DG,即可得出結(jié)果;

(3)連接MA、MC,過CCT⊥PMT,證明△CMT≌△MAH,可證明△CGT是等腰直角三角形,可求得∠CGM=45°

解:(1)∵a2﹣24a+|b﹣12|=﹣144,

∴(a﹣12)2+|b﹣12|=0,

∴a﹣12=0,b﹣12=0,

∴a=b=12,

∴A(12,0),B(0,12),

∴OA=OB=12,

∵OC:OA=1:3.

∴OC=4,

∴C(﹣4,0);

(2)EG⊥x軸于G,F(xiàn)H⊥x軸于H,如圖1所示:

∠FHD=∠EGD=90°,

∵BD平分△BEF的面積,

∴DF=DE,

△FDH△EDG中,

∴△FDH≌△EDG(AAS),

∴DH=DG,即﹣xE+2=xF﹣2,

∴xE+xF=4;

(3)不改變,理由如下:
如圖3,連接MA、MC,過CCT⊥PMT,過MMS⊥x軸于點(diǎn)S,

∵M(jìn)(4,8),C(-4,0),A(12,0),

∴S(4,0),

∴MS垂直平分AC,

∴MC=MA,且MS=SC,

∴∠CMA=90°,

∴∠CMT+∠AMH=∠TCM+∠CMT=90°,
∴∠TCM=∠AMH,
在△CMT和△MAH
,

∴△CMT≌△MAH(AAS),
∴TM=AH,CT=MH,
AH=HG,
∴MT=GH,
∴GT=GM+MT=MG+GH=MH=CT,
∴△CGT是等腰直角三角形,
∴∠CGM=45°,
即當(dāng)點(diǎn)P在點(diǎn)A右側(cè)運(yùn)動(dòng)時(shí),∠CGM的度數(shù)不改變.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,以點(diǎn)A為圓心,AB長為半徑畫弧交AD于點(diǎn)F,再分別以點(diǎn)B、F為圓心,大于 BF長為半徑畫弧,兩弧交于一點(diǎn)P,連
接AP并延長交BC于點(diǎn)E,連接EF.

(1)四邊形ABEF是;(選填矩形、菱形、正方形、無法確定)(直接填寫結(jié)果)
(2)AE,BF相交于點(diǎn)O,若四邊形ABEF的周長為40,BF=10,則AE的長為 , ∠ABC=°.(直接填寫結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明從家騎自行車出發(fā),沿一條直路到相距2400m的郵局辦事,小明出發(fā)的同時(shí),他的爸爸以96m/min速度從郵局同一條道路步行回家,小明在郵局停留2min后沿原路以原速返回,設(shè)他們出發(fā)后經(jīng)過t min時(shí),小明與家之間的距離為s1m,小明爸爸與家之間的距離為s2m,圖中折線OABD、線段EF分別表示s1、s2t之間的函數(shù)關(guān)系的圖象

(1)求s2t之間的函數(shù)關(guān)系式;

(2)小明從家出發(fā),經(jīng)過多長時(shí)間在返回途中追上爸爸?這時(shí)他們距離家還有多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2﹣2ax+c(a<0)的最大值為4,且拋物線過點(diǎn)( ,﹣ ),點(diǎn)P(t,0)是x軸上的動(dòng)點(diǎn),拋物線與y軸交點(diǎn)為C,頂點(diǎn)為D.
(1)求該二次函數(shù)的解析式,及頂點(diǎn)D的坐標(biāo);
(2)求|PC﹣PD|的最大值及對應(yīng)的點(diǎn)P的坐標(biāo);
(3)設(shè)Q(0,2t)是y軸上的動(dòng)點(diǎn),若線段PQ與函數(shù)y=a|x|2﹣2a|x|+c的圖象只有一個(gè)公共點(diǎn),求t的取值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,隨機(jī)地閉合開關(guān)S1 , S2 , S3 , S4 , S5中的三個(gè),能夠使燈泡L1 , L2同時(shí)發(fā)光的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,把橫縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“整點(diǎn)”.

(1)直接寫出函數(shù)y= 圖象上的所有“整點(diǎn)”A1 , A2 , A3 , …的坐標(biāo);
(2)在(1)的所有整點(diǎn)中任取兩點(diǎn),用樹狀圖或列表法求出這兩點(diǎn)關(guān)于原點(diǎn)對稱的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】第十二屆全國人大四次會(huì)議審議通過的《中華人民共和國慈善法》將于今年9月1日正式實(shí)施,為了了解居民對慈善法的知曉情況,某街道辦從轄區(qū)居民中隨機(jī)選取了部分居民進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的扇形圖.若該轄區(qū)約有居民9000人,則可以估計(jì)其中對慈善法“非常清楚”的居民約有人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)體育模擬測試中,六名男生引體向上的成績?nèi)缦拢▎挝唬簜(gè)):10、6、9、11、8、10,下列關(guān)于這組數(shù)據(jù)描述正確的是(
A.極差是6
B.眾數(shù)是10
C.平均數(shù)是9.5
D.方差是16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A、B的坐標(biāo)分別為(8,0)、(0,2 ),C是AB的中點(diǎn),過點(diǎn)C作y軸的垂線,垂足為D,動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿DC向點(diǎn)C勻速運(yùn)動(dòng),過點(diǎn)P作x軸的垂線,垂足為E,連接BP、EC.當(dāng)BP所在直線與EC所在直線第一次垂直時(shí),點(diǎn)P的坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊答案