【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE交AE延長線于D,DM⊥AC交AC的延長線于M,連接CD,以下四個結(jié)論:
①∠ADC=45°;②BD=AE;③AC+CE=AB;④AC+AB=2AM.其中正確的結(jié)論有( )
A. 1個 B. 2個 C. 3個 D. 4個
【答案】D
【解析】
①過E作EQ⊥AB于Q.根據(jù)角平分線定義和勾股定理及等腰直角三角形性質(zhì)得AB=AQ+BQ=AC+CE.②作∠ACN=∠BCD,交AD于N.證△ACN≌△BCD(ASA),得CN=CD.根據(jù)等腰直角三角形性質(zhì)得AN=CN,∠NCE=∠AEC=67.5°,CN=NE,CD=AN=EN=AE;③過D作DH⊥AB于H,根據(jù)等腰三角形性質(zhì)和角平分線定義,△DCM≌△DBH(AAS),BH=CM.由勾股定理得AM=AH,所以AC+AB=AC+AH+BH=AC+AM+CM=2AM.
過E作EQ⊥AB于Q.
∵∠ACB=90°,AE平分∠CAB,
∴CE=EQ.
∵∠ACB=90°,AC=BC,
∴∠CBA=∠CAB=45°.
∵EQ⊥AB,
∴∠EQA=∠EQB=90°.
由勾股定理得AC=AQ,
∴∠QEB=45°=∠CBA,
∴EQ=BQ,
∴AB=AQ+BQ=AC+CE,
∴①③正確;
作∠ACN=∠BCD,交AD于N.
∵∠CAD=∠CAB=22.5°=∠BAD,
∴∠DBA=90°-22.5°=67.5°,
∴∠DBC=67.5°-45°=22.5°,
∴∠DBC=∠CAD.在△ACN和△BCD中,
∴△ACN≌△BCD(ASA),CN=CD.
∵∠ACN+∠NCE=90°,
∴∠NCB+∠BCD=90°,
∴∠CND=∠CDN=45°,
∴∠ACN=45°-22.5°=22.5°=∠CAN,
∴AN=CN,
∴∠NCE=∠AEC=67.5°,
∴CN=NE,
∴CD=AN=EN=AE,
∴②正確;
過D作DH⊥AB于H,
∵∠MCD=∠CAD+∠CDA=67.5°,∠DBA=90°-∠DAB=67.5°,
∴∠MCD=∠DBA.
∵AE平分∠CAB,DM⊥AC,DH⊥AB,
∴DM=DH.在△DCM和△DBH中,
∴△DCM≌△DBH(AAS),
∴BH=CM.
由勾股定理得AM=AH,
∴AC+AB=AC+AH+BH=AC+AM+CM=2AM,
∴④正確.
故選:D
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點E,交CB于點F.若AC=3,AB=5,則CE的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD和正方形AEFG有一個公共點A,點G、E分別在線段AD、AB上.
(1)連接DF、BF,若將正方形AEFG繞點A按順時針方向旋轉(zhuǎn),判斷命題“在旋轉(zhuǎn)的過程中,線段DF與BF的長始終相等”是否正確?答: .
(2)若將正方形AEFG繞點A按順時針方向旋轉(zhuǎn),連接DG,在旋轉(zhuǎn)過程中,你能否找到一條線段的長與線段DG的長始終相等?并以圖為例說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1,線段AB、CD相交于點O,連接AD、CB,我們把形如圖1的圖形稱之為“8字形”.如圖2,在圖1的條件下,∠DAB和∠BCD的平分線AP和CP相交于點P,并且與CD、AB分別相交于M、N.試解答下列問題:
(1)在圖1中,請直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系: ;
(2)圖2中,當∠D=50度,∠B=40度時,求∠P的度數(shù).
(3)圖2中∠D和∠B為任意角時,其他條件不變,試問∠P與∠D、∠B之間存在著怎樣的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,數(shù)軸上有A、B、C三點,且AB=3BC,若B為原點,A點表示數(shù)為6.
(1)求C點表示的數(shù);
(2)若數(shù)軸上有一動點P,以每秒1個單位的速度從點C向點A勻速運動,設運動時間為t秒,請用含t的代數(shù)式表示PB的長;
(3)在(2)的條件下,點P運動的同時有一動點Q從點A以每秒2個單位的速度向點C勻速運動,當P、Q兩點相距2個單位長度時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,
(1)求證:AD平分∠BAC;(2)已知AC=20, BE=4,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地下管道,若由甲隊單獨鋪設,恰好在規(guī)定時間內(nèi)完成;若由乙隊單獨鋪設,需要超過規(guī)定時間15天才能完成,如果先由甲、乙兩隊合做10天,再由乙隊單獨鋪設正好按時完成.
(1)這項工程的規(guī)定時間是多少天?
(2)已知甲隊每天的施工費用為5000元,乙隊每天的施工費用為3000元,為了縮短工期以減少對居民交通的影響,工程指揮部最終決定該工程由甲、乙兩隊合做來完成,那么該工程施工費用是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,CD是AB邊上的高,∠BAC的平分線為AF,AF與CD交于點E,則△CEF是__________三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),A、E、F、C在一條直線上,AE=CF,過E、F分別作DE⊥AC,BF⊥AC,若AB=CD,試證明BD平分EF,若將△DEC的邊EC沿AC方向移動變?yōu)閳D(2)時,其余條件不變,上述結(jié)論是否成立?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com