【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE交AE延長線于D,DM⊥AC交AC的延長線于M,連接CD,以下四個結(jié)論:

①∠ADC=45°;②BD=AE;③AC+CE=AB;④AC+AB=2AM.其中正確的結(jié)論有(

A. 1個 B. 2個 C. 3個 D. 4個

【答案】D

【解析】

①過EEQABQ.根據(jù)角平分線定義和勾股定理及等腰直角三角形性質(zhì)得ABAQBQACCE.②作∠ACN=∠BCD,交ADN.證△ACN≌△BCD(ASA),得CNCD.根據(jù)等腰直角三角形性質(zhì)得ANCN,∠NCE=∠AEC=67.5°,CNNE,CDANENAE;③過DDHABH,根據(jù)等腰三角形性質(zhì)和角平分線定義,△DCM≌△DBH(AAS),BHCM.由勾股定理得AMAH,所以ACABACAHBHACAMCM=2AM.

EEQABQ.

∵∠ACB=90°,AE平分∠CAB,

CEEQ.

∵∠ACB=90°,ACBC

∴∠CBA=∠CAB=45°.

EQAB

∴∠EQA=∠EQB=90°.

由勾股定理得ACAQ,

∴∠QEB=45°=∠CBA,

EQBQ,

ABAQBQACCE,

∴①③正確;

作∠ACN=∠BCD,交ADN.

∵∠CADCAB=22.5°=∠BAD,

∴∠DBA=90°-22.5°=67.5°,

∴∠DBC=67.5°-45°=22.5°,

∴∠DBC=∠CAD.在△ACN和△BCD中,

∴△ACN≌△BCD(ASA),CNCD.

∵∠ACN+∠NCE=90°,

∴∠NCB+∠BCD=90°,

∴∠CND=∠CDN=45°,

∴∠ACN=45°-22.5°=22.5°=∠CAN,

ANCN

∴∠NCE=∠AEC=67.5°,

CNNE,

CDANENAE,

∴②正確;

DDHABH

∵∠MCD=∠CAD+∠CDA=67.5°,∠DBA=90°-∠DAB=67.5°,

∴∠MCD=∠DBA.

AE平分∠CAB,DMAC,DHAB,

DMDH.在△DCM和△DBH中,

∴△DCM≌△DBH(AAS),

BHCM.

由勾股定理得AMAH,

ACABACAHBHACAMCM=2AM,

∴④正確.

故選:D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點E,交CB于點F.若AC=3,AB=5,則CE的長為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD和正方形AEFG有一個公共點A,點G、E分別在線段AD、AB上.

(1)連接DF、BF,若將正方形AEFG繞點A按順時針方向旋轉(zhuǎn),判斷命題“在旋轉(zhuǎn)的過程中,線段DF與BF的長始終相等”是否正確?答:
(2)若將正方形AEFG繞點A按順時針方向旋轉(zhuǎn),連接DG,在旋轉(zhuǎn)過程中,你能否找到一條線段的長與線段DG的長始終相等?并以圖為例說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖1,線段AB、CD相交于點O,連接AD、CB,我們把形如圖1的圖形稱之為“8字形”.如圖2,在圖1的條件下,∠DAB和∠BCD的平分線AP和CP相交于點P,并且與CD、AB分別相交于M、N.試解答下列問題:

(1)在圖1中,請直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系:   

(2)圖2中,當∠D=50度,∠B=40度時,求∠P的度數(shù).

(3)圖2中∠D和∠B為任意角時,其他條件不變,試問∠P與∠D、∠B之間存在著怎樣的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,數(shù)軸上有A、B、C三點,且AB=3BC,若B為原點,A點表示數(shù)為6.

(1)求C點表示的數(shù);

(2)若數(shù)軸上有一動點P,以每秒1個單位的速度從點C向點A勻速運動,設運動時間為t秒,請用含t的代數(shù)式表示PB的長;

(3)在(2)的條件下,點P運動的同時有一動點Q從點A以每秒2個單位的速度向點C勻速運動,當P、Q兩點相距2個單位長度時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,

(1)求證:AD平分∠BAC;(2)已知AC=20, BE=4,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地下管道,若由甲隊單獨鋪設恰好在規(guī)定時間內(nèi)完成;若由乙隊單獨鋪設,需要超過規(guī)定時間15天才能完成如果先由甲、乙兩隊合做10再由乙隊單獨鋪設正好按時完成.

(1)這項工程的規(guī)定時間是多少天?

(2)已知甲隊每天的施工費用為5000,乙隊每天的施工費用為3000,為了縮短工期以減少對居民交通的影響工程指揮部最終決定該工程由甲、乙兩隊合做來完成,那么該工程施工費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,CDAB邊上的高,∠BAC的平分線為AF,AFCD交于點E,則CEF__________三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),A、E、F、C在一條直線上,AE=CF,過E、F分別作DEAC,BFAC,若AB=CD,試證明BD平分EF,若將DEC的邊EC沿AC方向移動變?yōu)閳D(2)時,其余條件不變,上述結(jié)論是否成立?請說明理由.

查看答案和解析>>

同步練習冊答案