【題目】如圖所示,數(shù)軸上有A、B、C三點(diǎn),且AB=3BC,若B為原點(diǎn),A點(diǎn)表示數(shù)為6.

(1)求C點(diǎn)表示的數(shù);

(2)若數(shù)軸上有一動(dòng)點(diǎn)P,以每秒1個(gè)單位的速度從點(diǎn)C向點(diǎn)A勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)用含t的代數(shù)式表示PB的長;

(3)在(2)的條件下,點(diǎn)P運(yùn)動(dòng)的同時(shí)有一動(dòng)點(diǎn)Q從點(diǎn)A以每秒2個(gè)單位的速度向點(diǎn)C勻速運(yùn)動(dòng),當(dāng)P、Q兩點(diǎn)相距2個(gè)單位長度時(shí),求t的值.

【答案】(1)﹣2(2)若0<t<2時(shí),PB的長為:2﹣t;若t2時(shí),PB的長為:t﹣2(3)s

【解析】

(1)根據(jù)AB=3BC,若B為原點(diǎn),A點(diǎn)表示數(shù)為6,即可求出C點(diǎn)表示的數(shù);

(2)設(shè)運(yùn)動(dòng)時(shí)間為t秒,分0<t<2時(shí),t>2時(shí),兩種情況分別求得PB的長;

(3)首先求出AC的長度,根據(jù)P從點(diǎn)C向點(diǎn)A勻速運(yùn)動(dòng),Q點(diǎn)A向點(diǎn)C勻速運(yùn)動(dòng),求出t的值.

(1)AB=3BC,A點(diǎn)表示數(shù)為6,若B為原點(diǎn),

C點(diǎn)表示的數(shù)為﹣2.

(2)設(shè)運(yùn)動(dòng)時(shí)間為t秒,

0<t<2時(shí),PB的長為:2﹣t

t>2時(shí),PB的長為:t﹣2

(3)AC=AB+BC=6+2=8

∵動(dòng)點(diǎn)P從點(diǎn)C向點(diǎn)A勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q點(diǎn)A向點(diǎn)C勻速運(yùn)動(dòng)

(8+2)÷(2+1)=s

t的值為s.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正比例函數(shù)y1=k1x(k1>0)與反比例函數(shù)y2= (k2>0)部分圖象如圖所示,則不等式k1x> 的解集在數(shù)軸上表示正確的是(

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點(diǎn),增加下列條件,不能得出BEDF的是( 。

A. AE=CF B. BE=DF C. ∠EBF=∠FDE D. ∠BED=∠BFD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC紙片沿DE折疊,使點(diǎn)A落在點(diǎn)A'處,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=110°,則∠1+2的度數(shù)為( 。

A. 80°; B. 90°; C. 100°; D. 110°;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)市委和市政府綠色環(huán)保,節(jié)能減排的號(hào)召,幸福商場用3300元購進(jìn)甲、乙兩種節(jié)能燈共計(jì)100只,很快售完.這兩種節(jié)能燈的進(jìn)價(jià)、售價(jià)如下表:

進(jìn)價(jià)(元/只)

售價(jià)(元/只)

甲種節(jié)能燈

30

40

甲種節(jié)能燈

35

50

(1)求幸福商場甲、乙兩種節(jié)能燈各購進(jìn)了多少只?

(2)全部售完100只節(jié)能燈后,商場共計(jì)獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE交AE延長線于D,DM⊥AC交AC的延長線于M,連接CD,以下四個(gè)結(jié)論:

①∠ADC=45°;②BD=AE;③AC+CE=AB;④AC+AB=2AM.其中正確的結(jié)論有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E在△ABC的外部,點(diǎn)DBC上,DEAC于點(diǎn)F,若∠1=2,AE=AC,BC=DE.

(1)求證:AB=AD;

(2)若∠1=60°,判斷△ABD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABCD相交于點(diǎn)O,AOC≌△BOD,點(diǎn)EF分別在OA、OB上,要使△EOC≌△FOD,添加的一個(gè)條件不可能是(  )

A. OCEODF B. CEADFB C. CEDF D. OEOF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在△ABC,C=90°,AD平分∠BAC,DEABE,則下列結(jié)論:AD平分∠CDE;②∠BAC=BDE;DE平分∠ADB;BE+AC=AB.其中正確的有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊答案