【題目】已知,如圖,BDO的直徑,點(diǎn)A、CO上并位于BD的兩側(cè),∠ABC45°,連結(jié)CD、OA并延長(zhǎng)交于點(diǎn)F,過(guò)點(diǎn)CO的切線(xiàn)交BD延長(zhǎng)線(xiàn)于點(diǎn)E

1)求證:∠F=∠ECF;

2)當(dāng)DF6tanEBC,求AF的值.

【答案】(1)詳見(jiàn)解析;(2).

【解析】

1)連結(jié)OC,根據(jù)切線(xiàn)的性質(zhì)得到OCCE,根據(jù)圓周角定理得到∠AOC90°,計(jì)算即可證明;

2DCx,根據(jù)正切的定義用x表示出BCBD、OC,根據(jù)正切的定義列式計(jì)算即可.

1)證明:連結(jié)OC,

CE切圓OC,

OCCE,

∴∠OCF+FCE90°

∵∠ABC45°,

∴∠AOC2ABC90°

∴∠F+OCF90°,

∴∠F=∠ECF;

2)設(shè)DCx

OBOC,

∴∠OBC=∠OCB,

BD為圓O的直徑

∴∠BCO+OCD90°,

∵∠ECD+OCD90°,

∴∠OBC=∠ECD,

∵∠F=∠ECD

∴∠F=∠EBC,

RtBCD中,tanEBC,

BC2DC2x,BDx,

OCOAx,

RtFOC中,tanFtanEBC

FCOC,即6+xx,

解得,x4

OF2OC4,

AFOFAO2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校開(kāi)展陽(yáng)光體育活動(dòng),決定開(kāi)設(shè)乒乓球、籃球、跑步、跳繩這四種運(yùn)動(dòng)項(xiàng)目,學(xué)生只能選擇其中一種,為了解學(xué)生喜歡哪一種項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成兩張不完整的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中的信息解答下列問(wèn)題:

(1)樣本中喜歡籃球項(xiàng)目的人數(shù)百分比是 ;其所在扇形統(tǒng)計(jì)圖中的圓心角的度數(shù)是

(2)把條形統(tǒng)計(jì)圖補(bǔ)畫(huà)完整并注明人數(shù);

(3)已知該校有1000名學(xué)生,根據(jù)樣本估計(jì)全校喜歡乒乓球的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,我們把橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).已知點(diǎn)A(0,4),點(diǎn)B是x軸正半軸上的整點(diǎn),記△AOB內(nèi)部(不包括邊界)的整點(diǎn)個(gè)數(shù)為m.當(dāng)點(diǎn)B的橫坐標(biāo)為4時(shí),m的值是_____.當(dāng)點(diǎn)B的橫坐標(biāo)為4n(n為正整數(shù))時(shí),m=_____(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為大力弘揚(yáng)“奉獻(xiàn)、友愛(ài)、互助、進(jìn)步”的志愿服務(wù)精神,傳播“奉獻(xiàn)他人、提升自我”的志愿服務(wù)理念,合肥市某中學(xué)利用周末時(shí)間開(kāi)展了“助老助殘、社區(qū)服務(wù)、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個(gè)志愿服務(wù)活動(dòng)(每人只參加一個(gè)活動(dòng)),九年級(jí)某班全班同學(xué)都參加了志愿服務(wù),班長(zhǎng)為了解志愿服務(wù)的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:

(1)請(qǐng)把折線(xiàn)統(tǒng)計(jì)圖補(bǔ)充完整;

(2)求扇形統(tǒng)計(jì)圖中,網(wǎng)絡(luò)文明部分對(duì)應(yīng)的圓心角的度數(shù);

(3)小明和小麗參加了志愿服務(wù)活動(dòng),請(qǐng)用樹(shù)狀圖或列表法求出他們參加同一服務(wù)活動(dòng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB4,BC5,點(diǎn)E是邊CD的中點(diǎn),將△ADE沿AE折疊后得到△AFE.延長(zhǎng)AF交邊BC于點(diǎn)G,則CG_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)魏晉時(shí)期的數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù)”,奠定了中國(guó)圓周率計(jì)算在世界上的領(lǐng)先地位.劉徽提出:“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體,而無(wú)所失矣”,由此求得圓周率的近似值.如圖,設(shè)半徑為的圓內(nèi)接正邊形的周長(zhǎng)為,圓的直徑為,當(dāng)時(shí),,則當(dāng)時(shí),______.(結(jié)果精確到0.01,參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年某水果加工公司分兩次采購(gòu)了一批桃子,第一次費(fèi)用為25萬(wàn)元,第二次費(fèi)用為30萬(wàn)元.已知第一次采購(gòu)時(shí)每噸桃子的價(jià)格比去年的平均價(jià)格上漲了0.1萬(wàn)元,第二次采購(gòu)時(shí)每噸桃子的價(jià)格比去年的平均價(jià)格下降了0.1萬(wàn)元,第二次采購(gòu)的數(shù)量是第一次采購(gòu)數(shù)量的2倍.

1)試問(wèn)去年每噸桃子的平均價(jià)格是多少萬(wàn)元??jī)纱尾少?gòu)的總數(shù)量是多少?lài)崳?/span>

2)該公司可將桃子加工成桃脯或桃汁,每天只能加工其中一種.若單獨(dú)加工成桃脯,每天可加工3噸桃子,每噸可獲利0.7萬(wàn)元;若單獨(dú)加工成桃汁,每天可加工9噸桃子,每噸可獲利0.2萬(wàn)元.為出口需要,所有采購(gòu)的桃子必須在30天內(nèi)加工完畢.

①根據(jù)該公司的生產(chǎn)能力,加工桃脯的時(shí)間不能超過(guò)多少天?

②在這次加工生產(chǎn)過(guò)程中,應(yīng)將多少?lài)嵦易蛹庸こ商腋拍塬@取最大利潤(rùn)?最大利潤(rùn)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系中的點(diǎn),將它的縱坐標(biāo)與橫坐標(biāo)的比稱(chēng)為點(diǎn)理想值,記作.如理想值

1)①若點(diǎn)在直線(xiàn)上,則點(diǎn)理想值等于_______;

②如圖,,的半徑為1.若點(diǎn)上,則點(diǎn)理想值的取值范圍是_______

2)點(diǎn)在直線(xiàn)上,的半徑為1,點(diǎn)上運(yùn)動(dòng)時(shí)都有,求點(diǎn)的橫坐標(biāo)的取值范圍;

3是以為半徑的上任意一點(diǎn),當(dāng)時(shí),畫(huà)出滿(mǎn)足條件的最大圓,并直接寫(xiě)出相應(yīng)的半徑的值.(要求畫(huà)圖位置準(zhǔn)確,但不必尺規(guī)作圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),AOB是等腰直角三角形,∠AOB=90°,點(diǎn)A2,1.

1)求點(diǎn)B的坐標(biāo);

2)求經(jīng)過(guò)AO、B三點(diǎn)的拋物線(xiàn)的函數(shù)表達(dá)式;

3)在(2)所求的拋物線(xiàn)上,是否存在一點(diǎn)P,使四邊形ABOP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案