【題目】為了解某校九年級(jí)全體男生1000米跑步的成績(jī),隨機(jī)抽取了部分男生進(jìn)行測(cè)試,并將測(cè)試成績(jī)分為、、四個(gè)等級(jí),繪制如下不完整的統(tǒng)計(jì)圖表,如題圖表所示,根據(jù)圖表信息解答下列問(wèn)題:

成績(jī)等級(jí)頻數(shù)分布表

成績(jī)等級(jí)

頻數(shù)

A

24

B

10

C

x

D

2

合計(jì)

y

成績(jī)等級(jí)扇形統(tǒng)計(jì)圖

1x=______y=______,扇形圖中表示的圓心角的度數(shù)為______度;

2)甲、乙、丙是等級(jí)中的三名學(xué)生,學(xué)校決定從這三名學(xué)生中隨機(jī)抽取兩名介紹體育鍛煉經(jīng)驗(yàn),用列表法或畫(huà)樹(shù)狀圖法,求同時(shí)抽到甲、乙兩名學(xué)生的概率.

【答案】14,40,36;(2.

【解析】

(1)根據(jù)B等級(jí)的人數(shù)以及所占的比例可求得y,用y減去其余3組的人數(shù)可求得x,用360乘以C等級(jí)所占的比例即可求得相應(yīng)圓心角的度數(shù);

(2)畫(huà)出樹(shù)狀圖得到所有等可能的情況數(shù),再找出符合條件的情況數(shù),利用概率公式進(jìn)行求解即可.

(1)y=10÷25%=40,

x=40-24-10-2=4,

360×=36度,

故答案為:4,40,36

(2)畫(huà)樹(shù)狀圖如圖:

共有6種等可能的情況,其中同時(shí)抽到甲、乙的有兩種情況,

∴P(同時(shí)抽到甲、乙)=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】文明交流互鑒是推動(dòng)人類(lèi)文明進(jìn)步和世界和平發(fā)展的重要?jiǎng)恿Γ?/span>20195月“亞洲文明對(duì)話(huà)大會(huì)”在北京成功舉辦,引起了世界人民的極大關(guān)注.某市一研究機(jī)構(gòu)為了了解1060歲年齡段市民對(duì)本次大會(huì)的關(guān)注程度,隨機(jī)選取了100名年齡在該范圍內(nèi)的市民進(jìn)行了調(diào)查,并將收集到的數(shù)據(jù)制成了尚不完整的頻數(shù)分布表、頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖,如下所示:

組別

年齡段

頻數(shù)(人數(shù))

1

5

2

3

35

4

20

5

15

1)請(qǐng)直接寫(xiě)出   ,   ,第3組人數(shù)在扇形統(tǒng)計(jì)圖中所對(duì)應(yīng)的圓心角是   度.

2)請(qǐng)補(bǔ)全上面的頻數(shù)分布直方圖;

3)假設(shè)該市現(xiàn)有1060歲的市民300萬(wàn)人,問(wèn)4050歲年齡段的關(guān)注本次大會(huì)的人數(shù)約有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:有兩個(gè)相鄰內(nèi)角互余的四邊形稱(chēng)為鄰余四邊形,這兩個(gè)角的夾邊稱(chēng)為鄰余線(xiàn).

1)如圖1,在中,,的角平分線(xiàn),,分別是,上的點(diǎn).求證:四邊形是鄰余四邊形.

2)如圖2,在的方格紙中,,在格點(diǎn)上,請(qǐng)畫(huà)出一個(gè)符合條件的鄰余四邊形,使是鄰余線(xiàn),在格點(diǎn)上.

3)如圖3,在(1)的條件下,取中點(diǎn),連結(jié)并延長(zhǎng)交于點(diǎn),延長(zhǎng)于點(diǎn).的中點(diǎn),,求鄰余線(xiàn)的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一輛超市購(gòu)物車(chē)放置在水平地面上,其側(cè)面四邊形ABCD與地面某條水平線(xiàn)l在同一平面內(nèi),且ABl,若∠A=93°,∠D=111°,則直線(xiàn)CDl所夾銳角的度數(shù)為(

A. 15°B. 18°C. 21°D. 24°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1是某酒店的推拉門(mén),已知門(mén)的寬度AD=2米,兩扇門(mén)的大小相同(即AB=CD),且AB+CD=AD,現(xiàn)將右邊的門(mén)CDD1C1繞門(mén)軸DD1向外面旋轉(zhuǎn)67°(如圖2所示).

參考數(shù)據(jù):(sin67°≈0.92cos67°≈0.39,tan29.6°≈057,tan19.6°≈0.36,sin29.6°≈0.49

1)求點(diǎn)C到直線(xiàn)AD的距離.

2)將左邊的門(mén)ABB1A1繞門(mén)軸AA1向外面旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為a(如圖3所示),問(wèn)當(dāng)a為多少度時(shí),點(diǎn)B,C之間的距離最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)軸交于、兩點(diǎn),是以點(diǎn)0,3)為圓心,2為半徑的圓上的動(dòng)點(diǎn),是線(xiàn)段的中點(diǎn),連結(jié).則線(xiàn)段的最大值是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是菱形的對(duì)角線(xiàn),分別是邊的中點(diǎn),連接,,則下列結(jié)論錯(cuò)誤的是( )

A. B. C. 四邊形是菱形D. 四邊形是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,解答問(wèn)題:

為解方程,我們可以將視為一個(gè)整體,然后設(shè),則,原方程可化為,解此方程得.當(dāng)時(shí),,∴;當(dāng)時(shí),,∴,∴原方程的解為.

(1)填空:在原方程得到方程(*)的過(guò)程中,利用________法達(dá)到了降次的目的,體現(xiàn)了________的數(shù)學(xué)思想;

(2)解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB=AD,那么添加下列一個(gè)條件后,仍無(wú)法判定ABC≌△ADC的是( 。

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

同步練習(xí)冊(cè)答案