【題目】如圖,在菱形中,,點(diǎn)為邊的中點(diǎn),點(diǎn)在對(duì)角線上且,則長(zhǎng)的最大值為__________.
【答案】
【解析】
連接PC,CE,AC;由已知條件可以得出PE+PC=PE+PA=1≥CE(當(dāng)P是AE與DB的交點(diǎn)時(shí)取等號(hào)),再利用等邊三角形的性質(zhì)得出CE=AB,進(jìn)而求出AB長(zhǎng)的最大值.
解:連接PC,CE,AC,如圖所示:
∵四邊形ABCD是菱形,
∴AB=BC,AP=PC,
∴PE+PC=PE+PA=6≥CE,
∵∠DAB=120°,
∴∠ABC=60°,
∴△ABC是等邊三角形,
∵點(diǎn)E為線段AB的中點(diǎn),
∴AE=BE,
∴∠AEC=90°,∠BCE=30°,
∴CE=BC·cos30°=BC=AB≤6,
所以AB≤,
即AB長(zhǎng)的最大值是,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,拋物線y=-x2+2x的頂點(diǎn)為A點(diǎn),且與x軸的正半軸交于點(diǎn)B,P點(diǎn)為該拋物線對(duì)稱軸上一點(diǎn),則OP+AP的最小值為( ).
A. 3 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)店專售一款電動(dòng)牙刷,其成本為20元/支,銷售中發(fā)現(xiàn),該商品每天的銷售量y(支)與銷售單價(jià)x(元/支)之間存在如圖所示的關(guān)系.
(1)求y與x之間的函數(shù)關(guān)系式.
(2)由于湖北省武漢市爆發(fā)了新型冠狀病毒肺炎(簡(jiǎn)稱“新冠肺炎”)疫情,該網(wǎng)店店主決定從每天獲得的利潤(rùn)中抽出200元捐獻(xiàn)給武漢,為了保證捐款后每天剩余利潤(rùn)不低于550元,如何確定這款電動(dòng)牙刷的銷售單價(jià)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,以AB為直徑的⊙O交AC于點(diǎn)M,弦MN∥BC交AB于點(diǎn)E,且ME=1,AM=2,AE=.
(1)求證:BC是⊙O的切線;
(2)求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲,乙兩人從一條長(zhǎng)為的筆直棧道兩端同時(shí)出發(fā),各自勻速走完該棧道全程后就地休息.圖1是甲出發(fā)后行走的路程(單位:)與行走時(shí)間(單位:)的函數(shù)圖象,圖2是甲,乙兩人之間的距離(單位:)與甲行走時(shí)間(單位:)的函數(shù)圖象.
(1)求甲,乙兩人的速度;
(2)求,的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線與鈾交于兩點(diǎn),與軸交于點(diǎn),頂點(diǎn)為.
(1)求拋物線的表達(dá)式;
(2)若將拋物線沿軸平移后得到拋物線,拋物線經(jīng)過(guò)點(diǎn)且與軸交于點(diǎn),頂點(diǎn)為.在拋物線上是否存在一點(diǎn)使?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)課上,李老師準(zhǔn)備了四張背面都一樣的卡片A、B、C、D,每張卡片的正面標(biāo)有字母a、b、c表示三條線段(如下圖).把四張卡片背面朝上放在桌面上,李老師從這四張卡片中隨機(jī)抽取一張卡片后不放回,再隨機(jī)抽取一張.
⑴ 李老師隨機(jī)抽取一張卡片,抽到卡片B的概率等于 ;
⑵ 求李老師抽取的兩張卡片中每張卡片上的三條線段都能組成三角形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AB=AE.
(1)求證:AC=ED;
(2)若AE平分∠DAB,∠EAC=25°.求∠ACD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,半圓O的直徑AB=4,=,DE⊥AB于E,DF⊥AC于F,連接CD,DB,OD.
(1)求證:△CDF≌△BDE;
(2)當(dāng)AD= 時(shí),四邊形AODC是菱形;
(3)當(dāng)AD= 時(shí),四邊形AEDF是正方形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com