【題目】(1)如圖,△ABC是邊長為2的等邊三角形,將△ABC沿直線BC向右平移,使點B與點C重合,得到△DCE,連接BD,交AC于點F.求線段BD的長.

(2)一次環(huán)保知識競賽共有25道題,規(guī)定答對一道題得4分,答錯或不答一道題扣1分.在這次競賽中,小明被評為優(yōu)秀(85分或85分以上),小明至少答對了幾道題?

【答案】(1)(2)22

【解析】

(1)由平移的性質(zhì)可知BE=2BC=4,DE=AC=2,故可得出BD⊥DE,由∠E=∠ACB=60°可知AC∥DE,根據(jù)勾股定理即可得出BD的長.

(2)將答對題數(shù)所得的分數(shù)減去打錯或不答所扣的分數(shù),在由題意知小明答題所得的分數(shù)大于等于85分,列出不等式即可.

(1)解:∵正△ABC沿直線BC向右平移得到正△DCE,

∴ BE=2BC=4, BC=CD,DE=AC=2,∠E=∠ACB=∠DCE=∠ABC=60°,

∴∠DBE=∠DCE =30°,

∴∠BDE=90°,

Rt△BDE中,由勾股定理得,

(2)解:設(shè)小明答對了x道題,

4x-(25-x) ≥85,

x≥22,

所以,小明至少答對了22道題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知yx﹣1成正比例,且當x=3時,y=4.

(1)求yx之間的函數(shù)表達式;

(2)當x=﹣1時,求y的值;

(3)當﹣3<y<5時,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1)(5mn2﹣4m2n)(﹣2mn

2)(x+7)(x﹣6x﹣2)(x+1

3 ()2 016×161 008;

【答案】1﹣10m2n3+8m3n2;(22x﹣40(3)1

【解析】試題分析:1)原式利用單項式乘以多項式法則計算即可得到結(jié)果;

2)原式兩項利用多項式乘以多項式法則計算,去括號合并即可得到結(jié)果

3)先根據(jù)冪的乘方的逆運算,把()2 016化為()1008,再根據(jù)積的乘方的逆運算計算即可.

試題解析:(1原式=5mn2)(﹣2mn+﹣4m2n)(﹣2mn=﹣10m2n3+8m3n2;

2原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40

3)原式=()1008×161 008=(×16)1 008=1.

型】解答
結(jié)束】
19

【題目】如圖,方格圖中每個小正方形的邊長為1,點AB、C都是格點.

1)畫出△ABC關(guān)于直線BM對稱的△A1B1C1;

2)寫出AA1的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,A,B的坐標分別為A(a,0),B(b,0),a,

b滿足 |a+2|+=0,C的坐標為(0,3).

(1)a,b的值及S三角形ABC;

(2)若點Mx軸上,S三角形ACMS三角形ABC試求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角板中的兩塊直角三角尺的直角頂點C按如圖方式疊放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):

(1)①若∠DCE=45°,則∠ACB的度數(shù)為  ;

②若∠ACB=140°,求∠DCE的度數(shù);

(2)由(1)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說明理由.

(3)當∠ACE<180°且點E在直線AC的上方時,這兩塊三角尺是否存在一組邊互相平行?若存在,請直接寫出∠ACE角度所有可能的值(不必說明理由);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,點O是等邊ABC內(nèi)的任一點,連接OA,OB,OC.

(1)如圖1,已知AOB=150°,BOC=120°,將BOC繞點C按順時針方向旋轉(zhuǎn)60°得ADC.

DAO的度數(shù)是

②用等式表示線段OA,OB,OC之間的數(shù)量關(guān)系,并證明;

(2)設(shè)AOB=α,BOC=β.

①當α,β滿足什么關(guān)系時,OA+OB+OC有最小值?請在圖2中畫出符合條件的圖形,并說明理由;

②若等邊ABC的邊長為1,直接寫出OA+OB+OC的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形均是一些科技創(chuàng)新公司標志圖,其中既是中心對稱圖形又是軸對稱圖形的是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ABE=ACD=Rt,AE=AD,ABC=ACB.求證:∠BAE=CAD

請補全證明過程,并在括號里寫上理由.

證明:在ABC中,

∵∠ABC=ACB

AB= ( )

RtABERtACD中,

=AC =AD

RtABERtACD( )

∴∠BAE=CAD( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,A點坐標為(2,4),B點坐標為(﹣3,﹣2),C點坐標為(3,1).

(1)在圖中畫出△ABC關(guān)于y軸對稱的△A′B′C′(不寫畫法),并寫出點A′,B′,C′的坐標;

(2)求△ABC的面積.

查看答案和解析>>

同步練習冊答案