【題目】如圖,正方形ABCD的邊長為2,點(diǎn)E為正方形外一個(gè)動(dòng)點(diǎn),∠AED45°,PAB中點(diǎn),線段PE的最大值是_____

【答案】

【解析】

當(dāng)點(diǎn)E在正方形右側(cè)時(shí),連接AC,BD交于點(diǎn)O,連接PO,EO,根據(jù)A,C,ED四點(diǎn)共圓,可得OEOD,再根據(jù)PE≤OP+OE,可得當(dāng)點(diǎn)O在線段PE上時(shí),PEOP+OE,則線段PE的最大值為;

當(dāng)點(diǎn)E在正方形上方時(shí),作斜邊為AD的等腰直角AOD,則點(diǎn)E在以O為圓心,OA為半徑的圓上,當(dāng)點(diǎn)P,點(diǎn)O,點(diǎn)E共線時(shí),PE的值最大,求得此時(shí)PE最大值為;比較兩個(gè)最大值,可得最終結(jié)果.

解:如圖,若點(diǎn)E在正方形右側(cè),連接AC,BD交于點(diǎn)O,連接PO,EO,

∵∠AED45°,∠ACD45°,

AC,E,D四點(diǎn)共圓,

∵正方形ABCD的邊長為2,

OEODBD,

PAB的中點(diǎn),OBD的中點(diǎn),

OPAD

PE≤OP+OE+,

∴當(dāng)點(diǎn)O在線段PE上時(shí),PEOP+OE+,

即線段PE的最大值為+,

如圖,點(diǎn)E在正方形ABCD上方,

作斜邊為AD的等腰直角AOD,∠AOD90°,

則點(diǎn)E在以O為圓心,OA為半徑的圓上,

∴當(dāng)點(diǎn)P,點(diǎn)O,點(diǎn)E共線時(shí),PE的值最大,

過點(diǎn)OONAB,交BA延長線于點(diǎn)N,

AD2,AODO,∠AOD90°

AO,∠OAD45°,

ONABADAB

∴∠NAO=∠NOA45°

ANNO

PO

PE最大值為,

故答案為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,AB=AC,射線BP從BA所在位置開始繞點(diǎn)B順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<180°)

(1)當(dāng)∠BAC=60°時(shí),將BP旋轉(zhuǎn)到圖2位置,點(diǎn)D在射線BP上.若∠CDP=120°,則∠ACD ∠ABD(填“>”、“=”、“<”),線段BD、CD與AD之間的數(shù)量關(guān)系是 ;

(2)當(dāng)∠BAC=120°時(shí),將BP旋轉(zhuǎn)到圖3位置,點(diǎn)D在射線BP上,若∠CDP=60°,求證:BD﹣CD=AD;

(3)將圖3中的BP繼續(xù)旋轉(zhuǎn),當(dāng)30°<α<180°時(shí),點(diǎn)D是直線BP上一點(diǎn)(點(diǎn)P不在線段BD上),若∠CDP=120°,請(qǐng)直接寫出線段BD、CD與AD之間的數(shù)量關(guān)系(不必證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店在開業(yè)前,所進(jìn)三種貨物:上衣、褲子和鞋子的數(shù)量共480份,這三種貨物進(jìn)貨的數(shù)量比例如圖(1)所示.商店安排6人只銷售上衣,4人只銷售褲子,2人只銷售鞋子,用了5天的時(shí)間銷售貨物的情況如圖(2)及表格所示.

1)求所進(jìn)三種貨物中上衣有多少件?

2)直接在圖中把圖(2)補(bǔ)充完整;

3)表格中的=    (直接填空)

4)若銷售人員不變,并以同樣的銷售速度銷售,則上衣、褲子和鞋子中最先銷售完的貨物為    (直接填空)

貨物

上衣()

褲子()

鞋子()

5天的銷售總額

150

a

30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一臺(tái)實(shí)物投影儀,圖2是它的示意圖,折線表示固定支架,垂直水平桌面,點(diǎn)為旋轉(zhuǎn)點(diǎn),可以旋轉(zhuǎn),當(dāng)繞點(diǎn)逆時(shí)針旋轉(zhuǎn)時(shí),投影探頭始終垂直于水平桌面,經(jīng)測量:,(結(jié)果精確到)

(1)如圖2所示,.

①填空: ;

②求投影探頭的端點(diǎn)到桌面的距離;

(2)如圖3所示,將(1)中的向下旋轉(zhuǎn),當(dāng)投影探頭的端點(diǎn)到桌面的距離為時(shí),求的大小.(參考數(shù)據(jù)span>)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生食堂共有座位個(gè),某天午餐時(shí),食堂中學(xué)生人數(shù)(人)與時(shí)間(分鐘)

變化的函數(shù)關(guān)系圖象如圖中的折線

1)試分別求出當(dāng)時(shí),的函數(shù)關(guān)系式;

2)已知該校學(xué)生數(shù)有人,考慮到安全因素,學(xué)校決定對(duì)剩余名同學(xué)延時(shí)用餐,即等食堂空閑座位不少于個(gè)時(shí),再通知剩余名同學(xué)用餐.請(qǐng)結(jié)合圖象分析,這名學(xué)生至少要延時(shí)多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為⊙O直徑AB延長線上的一點(diǎn),PC切⊙O于點(diǎn)C,過點(diǎn)BCP的垂線BH交⊙O于點(diǎn)D,連結(jié)AC,CD

1)求證:∠PBH2HDC;

2)若sinPBH3,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市青少年健康研究中心隨機(jī)抽取了本市1000名小學(xué)生和若干名中學(xué)生,對(duì)他們的視力狀況進(jìn)行了調(diào)查,并把調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖.(近視程度分為輕度、中度、高度三種)

1)求這1000名小學(xué)生患近視的百分比.

2)求本次抽查的中學(xué)生人數(shù).

3)該市有中學(xué)生8萬人,小學(xué)生10萬人.分別估計(jì)該市的中學(xué)生與小學(xué)生患中度近視的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某蔬菜經(jīng)銷商去蔬菜生產(chǎn)基地批發(fā)某種蔬菜,已知這種蔬菜的批發(fā)量在20千克至60千克之間(含20千克和60千克)時(shí),每千克批發(fā)5元;若超過60千克是,批發(fā)的這種蔬菜全部打八折,但批發(fā)總金額不得少于300元.

1)根據(jù)題意,填寫如表:

蔬菜的批發(fā)量(千克)

...

25

60

75

90

...

所付的金額(元)

...

125

300

...

2)經(jīng)調(diào)查,該蔬菜經(jīng)銷商銷售該種蔬菜的日銷售量(千克)與零售價(jià)x(元/千克)是一次函數(shù)關(guān)系,其圖象如圖,求出之間的函數(shù)關(guān)系式;

3)若該蔬菜經(jīng)銷商每日銷售此種蔬菜不低于75千克,且零售價(jià)不變,那么零售價(jià)定為多少時(shí),該經(jīng)銷商銷售此種蔬菜的當(dāng)日利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+cx軸交于點(diǎn)A(﹣10),B50),與y軸交于點(diǎn)C0,),頂點(diǎn)為D,對(duì)稱軸交x軸于點(diǎn)E

1)求該拋物線的一般式;

2)若點(diǎn)Q為該拋物線上第一象限內(nèi)一動(dòng)點(diǎn),且點(diǎn)Q在對(duì)稱軸DE的右側(cè),求四邊形DEBQ面積的最大值及此時(shí)點(diǎn)Q的坐標(biāo);

3)若點(diǎn)P為對(duì)稱軸DE上異于D,E的動(dòng)點(diǎn),過點(diǎn)D作直線PB的垂線交直線PB于點(diǎn)F,交x軸于點(diǎn)G,當(dāng)△PDG為等腰三角形時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案