已知四邊形ABCD中,E、F分別是AB、AD邊上的點,DE與CF交于點G.

(1)如圖①,若四邊形ABCD是矩形,且DE⊥CF,求證

(2)如圖②,若四邊形ABCD是平行四邊形,試探究:當(dāng)∠B與∠EGC滿足什么關(guān)系時,使得成立?并證明你的結(jié)論;

(3)如圖③,若BA=BC=2,DA=DC=,∠BAD=90°,DE⊥CF,試求的值.


(1)證明見解析;(2)當(dāng)∠B+∠EGC=180°時,成立;理由見解析;(3).

【解析】(1)∵四邊形ABCD是矩形,∴∠A=∠ADC=90°,∵DE⊥CF,∴∠ADE=∠DCF,∴△ADE∽△DCF,∴

(2)當(dāng)∠B+∠EGC=180°時,成立.

 在AD的延長線上取點M,使CM=CF,則∠CMF=∠CFM.

∵AB∥CD,∴∠A=∠CDM,∵∠B+∠EGC=180°,∴∠AED=∠FCB,∴∠CMF=∠AED.

∴△ADE∽△DCM,∴,即

(3)過點C作CH⊥AD于H,可證△ADE∽△HCF,∴


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


實施新課程改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,張老師為了了解所教班級學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對本班部分學(xué)生進(jìn)行了為期三個月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:

(1)本次調(diào)查中,張老師一共調(diào)查了         名同學(xué),其中C類女生有        名, D類男生有        名;

(2)將上面的條形統(tǒng)計圖補充完整;

(3)為了共同進(jìn)步,張老師想從被調(diào)查的A類和D類學(xué)生中分別選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


△ABC的周長為30 cm,把△ABC的邊AC對折,使頂點C和點A重合,折痕交BC邊于點D,交AC邊于點E,連接AD,若AE=4 cm,則△ABD的周長是

A.22 cm  B.20 cm  C.18 cm  D.15 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在Rt△ABC中,∠C=90°,,把這個直角三角形繞頂點C旋轉(zhuǎn)后得到Rt△A'B'C,其中點B' 正好落在AB上,A'B'與AC相交于點D,那么    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知,在△ABC中,∠BAC=90°,∠ABC=45°,點D為直線BC上一動點(點D不與點B,C重合).以AD為邊做正方形ADEF,連接CF

(1)如圖1,當(dāng)點D在線段BC上時.求證CF+CD=BC;

(2)如圖2,當(dāng)點D在線段BC的延長線上時,其他條件不變,請直接寫出CF,BC,CD三條線段之間的關(guān)系;

(3)如圖3,當(dāng)點D在線段BC的反向延長線上時,且點A,F(xiàn)分別在直線BC的兩側(cè),其他條件不變;

①請直接寫出CF,BC,CD三條線段之間的關(guān)系;

②若正方形ADEF的邊長為2,對角線AE,DF相交于點O,連接OC 求OC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


設(shè)a、b為非負(fù)實數(shù),則當(dāng)代數(shù)式取得最小值時,=        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


關(guān)于x的方程有實數(shù)根,則的取值范圍是【    】

    A.  >–5          B. ≥–5且≠–1        C. >–5且≠–1         D. ≥–5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 如圖,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE = EF =DE =5 , FB =,動點P從點A出發(fā),沿折線AD-DC-CB以每秒1個單位長的速度運動到點B停止.設(shè)運動時間為t秒,y = S△EPF,則y與t的函數(shù)關(guān)系式為          。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 函數(shù)的圖象如圖,那么關(guān)于x的分式方程的解是【    】

A.x=1   B.x=2   C.x=3   D.x=4

查看答案和解析>>

同步練習(xí)冊答案