【題目】如圖,,且,,且,請(qǐng)按照?qǐng)D中所標(biāo)注的數(shù)據(jù)計(jì)算圖中實(shí)線所圍成的圖形的面積______.
【答案】50
【解析】
根據(jù)∠F=∠AGB=∠EAB=90°,證明∠FEA=∠BAG,再根據(jù)AAS證△FEA≌△GAB,推出AG=EF=6,AF=BG=2,同理CG=DH=4,BG=CH=2,求出FH=14,根據(jù)陰影部分的面積=S梯形EFHD-S△EFA-S△ABC-S△DHC和面積公式代入求出即可.
∵AE⊥AB,EF⊥AF,BG⊥AG,
∴∠F=∠AGB=∠EAB=90°,
∴∠FEA+∠EAF=90°,∠EAF+∠BAG=90°,
∴∠FEA=∠BAG,
在△FEA和△GAB中,,
∴△FEA≌△GAB(AAS),
∴AG=EF=6,AF=BG=2,
同理可證:△CBG≌△DCH(AAS),
∴CG=DH=4,BG=CH=2,
∴FH=2+6+4+2=14,
∴梯形EFHD的面積=×(EF+DH)×FH=×(6+4)×14=70,
∴陰影部分的面積=S梯形EFHDS△EFAS△ABCS△DHC
=70×6×2×(6+4)×2×4×2
=50.
故答案為50.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)為了綠化環(huán)境,計(jì)劃分兩次購進(jìn)A、B兩種花草,第一次分別購進(jìn)A、B兩種花草30棵和15棵,共花費(fèi)675元;第二次分別購進(jìn)A、B兩種花草12棵和5棵兩次共花費(fèi)940元兩次購進(jìn)的A、B兩種花草價(jià)格均分別相同.
、B兩種花草每棵的價(jià)格分別是多少元?
若再次購買A、B兩種花草共12棵、B兩種花草價(jià)格不變,且A種花草的數(shù)量不少于B種花草的數(shù)量的4倍,請(qǐng)你給出一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰三角形的腰長為6cm,底邊長為4cm,以等腰三角形的頂角的頂點(diǎn)為圓心5cm為半徑畫圓,那么該圓與底邊的位置關(guān)系是( )
A.相離
B.相切
C.相交
D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c中,自變量x與函數(shù)y之間的部分對(duì)應(yīng)值如下表:
在該函數(shù)的圖象上有A(x1 , y1)和B(x2 , y2)兩點(diǎn),且-1<x1<0,3<x2<4,y1與y2的大小關(guān)系正確的是( )
A.y1≥y2
B.y1>y2
C.y1≤y2
D.y1<y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+3與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),對(duì)稱軸與拋物線相交于點(diǎn)M,與x軸相交于點(diǎn)N.點(diǎn)P是線段MN上的一動(dòng)點(diǎn),過點(diǎn)P作PE⊥CP交x軸于點(diǎn)E.
(1)直接寫出拋物線的頂點(diǎn)M的坐標(biāo)是 .
(2)當(dāng)點(diǎn)E與點(diǎn)O(原點(diǎn))重合時(shí),求點(diǎn)P的坐標(biāo).
(3)點(diǎn)P從M運(yùn)動(dòng)到N的過程中,求動(dòng)點(diǎn)E的運(yùn)動(dòng)的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線AB∥CD,點(diǎn)M,N分別在直線AB,CD上,點(diǎn)E為平面內(nèi)一點(diǎn).
(1)如圖1,∠BME,∠E,∠END的數(shù)量關(guān)系為 (直接寫出答案);
(2)如圖2,∠BME=m°,EF平分∠MEN,NP平分∠END,EQ∥NP,求∠FEQ的度數(shù)(用用含m的式子表示)
(3)如圖3,點(diǎn)G為CD上一點(diǎn),∠BMN=n·∠EMN,∠GEK=n·∠GEM,EH∥MN交AB于點(diǎn)H,探究∠GEK,∠BMN,∠GEH之間的數(shù)量關(guān)系(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在解方程組時(shí),我們可以先①+②,得再②-①,得最后重新組成方程組,這種解二元一次方程組的解法我們稱為二元一次方程組的輪換對(duì)稱解法.
(1)用輪換對(duì)稱解法解方程組,得_____________________________;
(2)如圖,小強(qiáng)和小紅一起搭積木,小強(qiáng)所搭的“小塔”高度為32cm,小紅所搭的“小樹”高度為3lcm,設(shè)每塊A型積木的高為每塊B型積木的高為求與的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】修建某一建筑時(shí),若請(qǐng)甲、乙兩個(gè)工程隊(duì)同時(shí)施工,5天可以完成,需付兩隊(duì)費(fèi)用共3 500元;若先請(qǐng)甲隊(duì)單獨(dú)做3天,再請(qǐng)乙隊(duì)單獨(dú)做6天可以完成,需付兩隊(duì)費(fèi)用共3 300元.問:
(1)甲、乙兩隊(duì)每天的費(fèi)用各為多少?
(2)若單獨(dú)請(qǐng)某隊(duì)完成工程,則單獨(dú)請(qǐng)哪隊(duì)施工費(fèi)用較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,是的中線,為的中點(diǎn),過點(diǎn)作與的延長線相交于點(diǎn),連接.
(1)如圖1,求證:四邊形是平行四邊形;
(2)如圖2,若,請(qǐng)直接寫出圖中所有的等腰三角形,不需要證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com