【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(﹣1,0),B(4,0),C(0,2)三點(diǎn),點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱(chēng),點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過(guò)點(diǎn)P作x軸的垂線交拋物線于點(diǎn)Q,交直線BD于點(diǎn)M.

(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;

(2)點(diǎn)P在線段AB上運(yùn)動(dòng)的過(guò)程中,是否存在點(diǎn)Q,使得△BOD∽△QBM?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(3)已知點(diǎn)F(0,),點(diǎn)P在x軸上運(yùn)動(dòng),試求當(dāng)m為何值時(shí)以D、M、Q、F為頂點(diǎn)的四邊形是平行四邊形.

【答案】(1)y=﹣x2+x+2;(2)存在,點(diǎn)Q的坐標(biāo)為(3,2);(3)m=﹣1或m=3或m=1+或1﹣時(shí),四邊形DMQF是平行四邊形.

【解析】

(1)根據(jù)待定系數(shù)法求解可得;

(2)利用BOD∽△QBM,再證MBQ∽△BPQ,解之即可得此時(shí)m的值.

(3)先利用待定系數(shù)法求出直線BD解析式為y=x-2,則Q(m,-m2+m+2)、M(m,m-2),由QMDF且四邊形DMQF是平行四邊形知QM=DF,據(jù)此列出關(guān)于m的方程,解之可得.

(1)由拋物線過(guò)點(diǎn)A(﹣1,0)、B(4,0)可設(shè)解析式為y=a(x+1)(x﹣4),

將點(diǎn)C(0,2)代入,得:﹣4a=2,

解得:a=﹣,

則拋物線解析式為y=﹣(x+1)(x﹣4)=﹣x2+x+2;

(2)如圖所示:

∵當(dāng)△BOD∽△QBM時(shí),

,

∵∠MBQ=90°,

∴∠MBP+∠PBQ=90°,

∵∠MPB=∠BPQ=90°,

∴∠MBP+∠BMP=90°,

∴∠BMP=∠PBQ,

∴△MBQ∽△BPQ,

,

,

解得:m1=3、m2=4,

當(dāng)m=4時(shí),點(diǎn)P、Q、M均與點(diǎn)B重合,不能構(gòu)成三角形,舍去,

∴m=3,點(diǎn)Q的坐標(biāo)為(3,2);

(3)由題意知點(diǎn)D坐標(biāo)為(0,﹣2),

設(shè)直線BD解析式為y=kx+b,

將B(4,0)、D(0,﹣2)代入,得:,

解得:,

∴直線BD解析式為y=x﹣2,

∵QM⊥x軸,P(m,0),

∴Q(m,﹣m2+m+2)、M(m,m﹣2),

則QM=﹣m2+m+2﹣(m﹣2)=﹣m2+m+4,

∵F(0,)、D(0,﹣2),

∴DF=,

∵QM∥DF,

∴當(dāng)|﹣m2+m+4|=時(shí),四邊形DMQF是平行四邊形,

解得:m=﹣1或m=3或m=1+或1﹣

即m=﹣1或m=3或m=1+或1﹣時(shí),四邊形DMQF是平行四邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,將拋物線y=x2平移,使平移后的拋物線經(jīng)過(guò)點(diǎn)A(–3,0)、B(1,0).

(1)求平移后的拋物線的表達(dá)式.

(2)設(shè)平移后的拋物線交y軸于點(diǎn)C,在平移后的拋物線的對(duì)稱(chēng)軸上有一動(dòng)點(diǎn)P,當(dāng)BPCP之和最小時(shí),P點(diǎn)坐標(biāo)是多少?

(3)y=x2與平移后的拋物線對(duì)稱(chēng)軸交于D點(diǎn),那么,在平移后的拋物線的對(duì)稱(chēng)軸上,是否存在一點(diǎn)M,使得以M、O、D為頂點(diǎn)的三角形△BOD相似?若存在,求點(diǎn)M坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠A=30°,AC=8,B=90°,點(diǎn)DAB上,BD=,點(diǎn)P在△ABC的邊上,則當(dāng)AP=2PD時(shí),PD的長(zhǎng)為____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,BC為弦,D為弧AC的中點(diǎn),AC、BD相交于點(diǎn)EAPBD的延長(zhǎng)線于點(diǎn)P.∠PAC=2∠CBD

(1)求證:APO的切線;

(2)若PD=3,AE=5,求△APE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120cm,高AD=80cm,要把它加工成一個(gè)矩形零件,使矩形PQMN的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB、AC上.設(shè)PQxcm,矩形PQMN的面積為ycm2,請(qǐng)寫(xiě)出y關(guān)于x的函數(shù)表達(dá)式(并注明x的取值范圍)_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OFAB,交AC于點(diǎn)F,點(diǎn)EAB的延長(zhǎng)線上,射線EM經(jīng)過(guò)點(diǎn)C,且∠ACE+AFO=180°.

(1)求證:EM是⊙O的切線;

(2)若∠A=E,BC=,求陰影部分的面積.(結(jié)果保留和根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒中有4個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為1,2,3,4,隨機(jī)摸取一個(gè)小球然后放回,再隨機(jī)摸出一個(gè)小球.

(Ⅰ)請(qǐng)用列表法(或畫(huà)樹(shù)狀圖法)列出所有可能的結(jié)果;

(Ⅱ)求兩次取出的小球標(biāo)號(hào)相同的概率;

(Ⅲ)求兩次取出的小球標(biāo)號(hào)的和大于6的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=ax+b(a,b為常數(shù),且a≠0)與反比例函數(shù)y=(m為常數(shù),且m≠0)的圖象交于點(diǎn)A(﹣2,1)、B(1,n).

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)連結(jié)OA、OB,求△AOB的面積;

(3)直接寫(xiě)出當(dāng)y1<y2<0時(shí),自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠C=90°,AB=10,cosB=,點(diǎn)MAB邊的中點(diǎn),將ABC繞著點(diǎn)M旋轉(zhuǎn),使點(diǎn)C與點(diǎn)A重合,點(diǎn)A與點(diǎn)D重合,點(diǎn)B與點(diǎn)E重合,得到DEA,且AECB于點(diǎn)P,那么線段CP的長(zhǎng)是__________

查看答案和解析>>

同步練習(xí)冊(cè)答案