【題目】某種型號汽車油箱容量為40升,每行駛100千米耗油10升.設(shè)一輛加滿油的該型號汽車行駛路程為x(千米),行駛過程中油箱內(nèi)剩余油量為y(升).
(1)求y與x之間的函數(shù)表達式;
(2)該輛汽車以80千米/時的速度從甲地出發(fā)開往距離甲地1050千米的B地,為了有效延長汽車使用壽命,廠家建議每次加油時,油箱內(nèi)剩余油量不低于油箱容量的,按此建議,求該輛汽車最多行駛多長時間就需再一次加油?此次加油后,剩余路程至少還需再加幾次油?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠1=∠2,DB=DC.
(1)求證:△ABD≌△EDC;
(2)若∠A=135°,∠BDC=30°,求∠BCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
我區(qū)在一項工程招標(biāo)時,接到甲、乙兩個工程隊的投標(biāo)書,從投標(biāo)書中得知:每施工一天,甲工程隊要萬元,乙工程隊要萬元,工程小組根據(jù)甲、乙兩隊標(biāo)書的測算,有三種方案:甲隊單獨完成這個工程,剛好如期完成;乙隊單獨完成這個工程要比規(guī)定時間多用5天;**********,剩下的工程由乙隊單獨做,也正好如期完成. 方案中“星號”部分被損毀了. 已知,一個同學(xué)設(shè)規(guī)定的工期為天,根據(jù)題意列出方程:
(1)請將方案中“星號”部分補充出來________________;
(2)你認(rèn)為哪個方案節(jié)省工程款,請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們生活質(zhì)量的提高,凈水器已經(jīng)慢慢走入了普通百姓家庭,某電器公司銷售每臺進價分別為 2000 元,1700 元的A,B兩種型號的凈水器,下表是近兩周的銷售情況:
(1)求A,B兩種型號的凈水器的銷售單價;
(2)若電器公司準(zhǔn)備用不多于 54000 元的金額采購這兩種型號的凈水器共 30 臺,求 A種型號的凈水器最多能采購多少臺?
(3)在(2)的條件下,公司銷售完這 30 臺凈水器能否實現(xiàn)利潤超過12800 元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋里裝有分別標(biāo)有漢字“書”、“ 香”、“ 歷”、“ 城”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻.
(1)若從中任取一個球,球上的漢字剛好是 “書”的概率為__________.
(2)從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表的方法,求取出的兩個球上的漢字能組成“歷城”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,G是邊長為4的正方形ABCD的邊BC上的一點,矩形DEFG的邊EF過A,GD=5.
(1)指出圖中所有的相似三角形;
(2)求FG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為了吸引顧客,設(shè)計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場同一日內(nèi),每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標(biāo)金額的和返還相應(yīng)價格的購物券,可以重新在本商場消費,某顧客剛好消費200元.
(1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;
(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BOC=60°,點A是BO延長線上的一點,OA=10cm,動點P從點A出發(fā)沿AB以2cm/s的速度移動,動點Q從點O出發(fā)沿OC以1cm/s的速度移動,如果點P、Q同時出發(fā),用t(s)表示移動的時間,當(dāng)t=_____s時,△POQ是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們已經(jīng)知道,形如的無理數(shù)的化簡要借助平方差公式:
例如:。
下面我們來看看完全平方公式在無理數(shù)化簡中的作用。
問題提出:該如何化簡?
建立模型:形如的化簡,只要我們找到兩個數(shù),使,這樣,,那么便有:,
問題解決:化簡,
解:首先把化為,這里,,由于4+3=7,,
即(,,
∴
模型應(yīng)用1:
利用上述解決問題的方法化簡下列各式:
(1);(2);
模型應(yīng)用2:
(3)在中,,,,那么邊的長為多少?(結(jié)果化成最簡)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com