【題目】端午節(jié)期間,甲、乙兩人沿同一路線行駛,各自開車同時去離家560千米的景區(qū)游玩,甲先以每小時60千米的速度勻速行駛1小時,再以每小時m千米的速度勻速行駛,途中體息了一段時間后,仍按照每小時m千米的速度勻速行駛,兩人同時到達目的地,圖中折線、線段分別表示甲、乙兩人所走的路程,與時間之間的函數(shù)關(guān)系的圖象請根據(jù)圖象提供的信息,解決下列問題:
圖中E點的坐標是______,題中______,甲在途中休息______h;
求線段CD的解析式,并寫出自變量x的取值范圍;
兩人第二次相遇后,又經(jīng)過多長時間兩人相距20km?
【答案】,100,1;直線CD的解析式為:;兩人第二次相遇后,又經(jīng)過時或時兩人相距
【解析】
(1)根據(jù)速度和時間列方程:60×1+m=160,可得m=100,根據(jù)D的坐標可計算直線OD的解析式,從圖中知E的橫坐標為2,可得E的坐標,根據(jù)點E到D的時間差及速度可得休息的時間;
(2)利用待定系數(shù)法求直線CD的解析式;
(3)先計算第二次相遇的時間:y=360時代入y=80x可得x的值,再計算x=5時直線OD的路程,可得路程差為40km,所以存在兩種情況:兩人相距20km,列方程可得結(jié)論.
由圖形得,
設(shè)OD的解析式為:,
把代入得:,,
:,
當時,,
,
由題意得:,,
,
故答案為:,100,1;
,,
直線AE:,
當時,,
,
,
,
設(shè)CD的解析式為:,
把,代入得:,解得:,
直線CD的解析式為:;
的解析式為:,
當時,,
,
出發(fā)5h時兩個相距40km,
把代入得:,
出發(fā)時兩人第二次相遇,
當時,,
,,
當時,,
,,
答:兩人第二次相遇后,又經(jīng)過時或時兩人相距
科目:初中數(shù)學 來源: 題型:
【題目】一個二元一次方程ax+by=c(a,b,c,為常數(shù),且A,B均不為0)有無數(shù)組解,我們規(guī)定,將其每一個解中x,y的值分別作為一個點的橫,縱坐標極點在平面直角坐標系中,這樣我們就得到了二元一次方程的圖象:一條直線,既二元一次方程的解均滿足其對應(yīng)直線上點的坐標,反之直線上點的坐標均為其對應(yīng)的二元一次方程的解,即2x-y=0,其中一解x=1,y=2,則對應(yīng)其圖象上一個點(1,2).
(1)如圖,3x+3y=12,的圖象為直線m,其與x軸交點A的坐標為____,其與y軸交點B的坐標為___;
(2)如圖,ax+by=-5的圖象為直線n,其與x軸交于C(-,0),與(1)中直線m交于P,若P的橫坐標為1,求a和b的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,矩形AOBC的兩邊與坐標軸重合,且OB=4,AO=3,若AD=3DC,以D為頂點的拋物線過原點.點M、N為動點,設(shè)運動時間為t秒.
(1)求拋物線的解析式;
(2)在圖1中,若點M在線段OB上從點O向點B以1個單位/秒的速度運動,同時,點N在線段BA上從點B向點A以2個單位/秒的速度運動,當一個點到達終點時,另一個點隨之停止運動.當t為何值時,△BMN為直角三角形?
(3)在圖2中,過點M做y軸的平行線,分別交拋物線和線段OD于P、G兩點,當t為何值時,△ODP的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是某班40名學生立定跳遠的得分記錄:
2,4,3,5,3,5,4,4,3,5
1,5,3,3,2,4,3,5,4,4
4,5,2,3,2,5,4,5,2,3
4,4,3,5,2,4,5,4,3,4
(1)完成下列統(tǒng)計表
得分 | 記錄 | 人數(shù) | 百分率% |
1 | |||
2 | |||
3 | |||
4 | |||
5 |
(2)用條形統(tǒng)計圖表示上面的數(shù)據(jù);
(3)用扇形統(tǒng)計圖表示不同得分的同學人數(shù)占班級總?cè)藬?shù)的百分率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】快車和慢車同時從甲地出發(fā),勻速行駛,快車到達乙地后,原路返回甲地,慢車到達乙地停止.圖①表示兩車行駛過程中離甲地的路程y(km)與出發(fā)時間x(h)的函數(shù)圖象,請結(jié)合圖①中的信息,解答下列問題:
(1)快車的速度為 km/h,慢車的速度為 km/h,甲乙兩地的距離為 km;
(2)求出發(fā)多長時間,兩車相距100km;
(3)若兩車之間的距離為s km,在圖②的直角坐標系中畫出s(km)與x(h)的函數(shù)圖象.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,點M是BC的中點,點P從點M出發(fā)沿MB以每秒1個單位的速度向點B勻速運動,到達點B后立刻以原速度沿BM返回;同時點Q從點M出發(fā)以每秒1個單位長的速度在射線MC上勻速運動,在點P,Q的運動過程中,以PQ為邊作正方形PQEF,使它與矩形ABCD在BC的同側(cè),點P,Q同時出發(fā),當點P返回點M時,則兩點停止運動,設(shè)點P,Q運動的時間是t秒(t>0).
(1)當點P運動到BM的中點時,t= ;
(2)設(shè)正方形PQEF與矩形ABCD重疊部分的面積為S,直接寫出S與t之間的函數(shù)關(guān)系式及t的取值范圍;
(3)連結(jié)AC,當正方形PQEF與△ADC重疊部分為三角形時,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,線段AB=5,AD=4,∠A=90°,DP∥AB,點C為射線DP上一點,BE平分∠ABC交線段AD于點E(不與端點A、D重合).
(1)當∠ABC為銳角,且tan∠ABC=2時,求四邊形ABCD的面積;
(2)當△ABE與△BCE相似時,求線段CD的長;
(3)設(shè)CD=x,DE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中央電視臺舉辦的“中國詩詞大會”節(jié)目受到中學生的廣泛關(guān)注.某中學為了了解學生對觀看“中國詩詞大會”節(jié)目的喜愛程度,對該校部分學生進行了隨機抽樣調(diào)查,并繪制出如圖所示的兩幅統(tǒng)計圖.在條形圖中,從左向右依次為A類(非常喜歡),B類(較喜歡)C類(一般),D類(不喜歡).請結(jié)合兩幅統(tǒng)計圖,回答下列問題:
(1)求本次抽樣調(diào)查的人數(shù);
(2)請補全兩幅統(tǒng)計圖;
(3)若該校有3000名學生,請你估計觀看“中國詩詞大會”節(jié)目較喜歡的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為提高學生的漢字書寫能力,開展了“漢字聽寫”大賽.七、八年級學生參加比賽,為了解這兩個年級參加比賽學生的成績情況,從中各隨機抽取10名學生的成績,數(shù)據(jù)如下(單位:分):
七年級 88 94 90 94 84 94 99 94 99 100
八年級 84 93 88 94 93 98 93 98 97 99
整理數(shù)據(jù):按如下分數(shù)段整理數(shù)據(jù)并補全表格:
成績x 人數(shù) 年級 | ||||
七年級 | 1 | 1 | 5 | 3 |
八年級 | 4 | 4 |
分析數(shù)據(jù):補全下列表格中的統(tǒng)計量:
統(tǒng)計量 年級 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
七年級 | 93.6 | 94 | 24.2 | |
八年級 | 93.7 | 93 | 20.4 |
得出結(jié)論:你認為哪個年級學生“漢字聽寫”大賽的成績比較好?并說明理由.(至少從兩個不同的角度說明推斷的合理性)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com