【題目】如圖,一次函數(shù)y=(m+1)x+4的圖像與x軸的負半軸相交于點A,與y軸相交于點B,且△OAB的面積為4.

(1)則= 及點的坐標(biāo)為( );

(2)過點B作直線BP軸的正半軸相交于點P,OP=4OA,求直線BP的解析式;

(3)將一次函數(shù)的圖像繞點B順時針旋轉(zhuǎn)求旋轉(zhuǎn)后的對應(yīng)的函數(shù)表達式.

【答案】(1)1,(-2,0);(2);(3)

【解析】

(1)先求得OB=4,然后根據(jù)三角形面積求得OA的長,即可求得A的坐標(biāo),把A的坐標(biāo)代入y=(m+1)x+4,即可求得m的值;

(2)利用OP=4OA=8可得到點P的坐標(biāo)為(8,0),然后利用待定系數(shù)法求直線BP的函數(shù)解析式.

(3)直線繞點順時針旋轉(zhuǎn) 的直線交軸于點,過點 于點,.根據(jù)容易證明,確定F點的坐標(biāo)

解:(1)∵直線y=(m+1)x+4y軸的交點B(0,4),OB=4,

SOAB=4,

×OA×OB=4,

OA=2,A(-2,0),

把點A(-2,0)代入y=(m+1)x+4,得-2(m+1)+4=0,

解得m=1;

故答案為1,(-2,0);

(2)

設(shè)直線的解析式為,

代入得,

直線的解析式為

( 3)直線繞點順時針旋轉(zhuǎn) 的直線交軸于點,過點 于點,軸,

∵直線繞點順時針旋轉(zhuǎn)

∴∠ABE=,

,

∴∠BAF=

AF=AB, BAO+FAE=

, AOB=

∴∠FHA=AOB=, ABO+BAO=

∴∠FAE=ABO

FH=OA=2, HA=OB=4

,

設(shè)直線的解析式為,

,

直線的解析式為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,BCEF是⊙O的弦,且EF垂直AB于點G,交BC于點H,CDFE延長線交于D點,CDDH

(1)求證:CD是⊙O的切線;

(2)若HBC中點,AB=10,EF=8,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,△ADF繞著點A順時旋轉(zhuǎn)90°得到△ABE,若AF=4,AB=7.

(1)求DE的長度;

(2)指出BEDF的關(guān)系如何?并說明由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+2與坐標(biāo)軸相交于A,B兩點,與反比例函數(shù)y=在第一象限交點C(1,a).求:

(1)反比例函數(shù)的解析式;

(2)AOC的面積;

(3)不等式x+2﹣<0的解集(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△OAB中,OA=4,AB=5,點C在OA上,AC=1,⊙P的圓心P在線段BC上,且⊙P與邊AB,AO都相切.若反比例函數(shù)(k≠0)的圖象經(jīng)過圓心P,則k=________________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y1的圖象與一次函數(shù)y2ax+b的圖象交于點A(1,4)和點Bm,﹣2).

(1)分別求出這兩個函數(shù)的關(guān)系式;

(2)觀察圖象,直接寫出關(guān)于x的不等式axb>0的解集;

(3)如果點C與點A關(guān)于x軸對稱,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點AB是反比例函數(shù)yk≠0)圖象上的兩點,延長線段ABy 軸于點C,且點B為線段AC中點,過點AADx軸子點D,點E 為線段OD的三等分點,且OEDE.連接AE、BE,若SABE7,則k的值為( 。

A. 12 B. 10 C. 9 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在矩形ABCD中,AB=2,BC=6,點E從點D出發(fā),沿DA方向以每秒1個單位的速度向點A運動,點F從點B出發(fā),沿射線AB以每秒3個單位的速度運動,當(dāng)點E運動到點A時,E、F兩點停止運動.連結(jié)BD,過點E作EH⊥BD,垂足為H,連結(jié)EF,交BD于點G,交BC于點M,連結(jié)CF.

(1)△CDE與△CBF相似嗎?為什么?

(2)求證:∠DBC=∠EFC;

(3)同線段GH的值是定值嗎?如果不是,請說明理由;如果是,求出這個定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】田忌賽馬的故事為我們所熟知.小亮與小齊學(xué)習(xí)概率初步知識后設(shè)計了如下游戲:小亮手中有方塊l0、8、6三張撲克牌,小齊手中有方塊9、7、5三張撲克牌.每人從各自手中取一張牌進行比較,數(shù)字大的為本“局”獲勝,每次取的牌不能放回.

(1)若每人隨機取手中的一張牌進行比賽,求小齊本“局”獲勝的概率;

(2)若比賽采用三局兩勝制,即勝2局或3局者為本次比賽獲勝者.當(dāng)小亮的三張牌出牌順序為先出6,再出8,最后出l0時,小齊隨機出牌應(yīng)對,求小齊本次比賽獲勝的概率.

查看答案和解析>>

同步練習(xí)冊答案